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Abstract

Finite difference time domain (FDTD) method is adopted to build a Bessel beams simulation model according to
homogeneousness and linearity of the Maxwell equations in source-free region. Validation for this model is confirmed
by comparing the simulation results with the theoretical results solved with a vector Helmholtz equation in free space
and good agreement with maximum error 2% has been demonstrated. It is indicated that FDTD could be an effective
approach to analyze other complicated models of Bessel beams in source-free region by means of superposition
principle.
r 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

Bessel beams, as one of cylindrically symmetric waves,
is a diffractionless electromagnetic wave, the scalar
theory of which was proposed for the first time by
Durnin [1] and Durnin et al. [2]. It plays an important
role in many optical aspects [3–6] as it provides
convenient techniques for avoiding or reducing an
inevitable diffractive spatial spreading. Vector solution
of Bessel beams was further calculated by solving a
vector potential and vector Helmlotz equation [7,8].
Since the nondiffracting property of Bessel beams,
several research works focus on its application on
near-field optics [9–11].

Since, however, most numerical algorithms in far-field
optics cannot be applied in near-field optics, finite

difference time domain (FDTD) method is one of the
most popular algorithms adapted in near-field optics as it
is well-known for solving the electromagnetic problems
with arbitrary boundary conditions and inhomogeneous
materials [12]. The continuous space is discretized into
small cubes called Yee cells with the size less than size of
relevant features and the time is discretized into small
steps much less than the period of the interested
electromagnetic wave so that two curl equations of
Maxwell equations become difference equations. Gener-
ally, the result of this algorithm would be stable if
DtpDu=

ffiffiffi
3
p

v
� �

according to numerical stability condition
in 3D FDTD [12], where Du is the side length of a cubic
cell, Dt is the time step, v is the optical velocity in the
considered medium. Mur [13] and Liao et al. [7] absorbing
boundary conditions are used practically in the algorithm
in order to make actual computation possible.

In this paper, exact vector solution of zero-order
transversal magnetic (TM) mode Bessel beams has been
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concluded by solving vector Helmlotz equation. And
then, a zero-order TM mode Bessel beams simulation
model is built by means of superposition of plane wave
with cylindrical linear polarization. At last, comparison
of the simulation result and the theoretical solution is
carried out as to the transversal and longitudinal
intensity distribution at any cross-section.

2. Exact solution of Bessel beams

The vector monochromatic wave equation can be
represented as the following vector Helmholz equation:

r2Cþ k2C ¼ 0, (1)

where k is wave vector of a monochromatic wave and C

could be any vector, such as electrical field, magnetic
field and vector potential. According to electromagnetic
theory and Bouchal and Olivik’s work [5], a vector
potential could be defined as the follows:

A ¼
i

o

X
n

anMn þ bnNn þ cnLnð Þ; (2)

where Mn, Nn and Ln are derived from the solution of
scalar Helmholz equation cn [8]. So magnetic induction
and electrical vector could be written in this form:

B ¼ r� A ¼ �
i

o

X
n

bnMn þ anNnð Þ

E ¼ �
X

n

anMn þ bnNnð Þ. ð3Þ

A, B, E will satisfy vector Helmholz equation,
respectively, if cn is solutions of scalar Helmhotz
equation so that a generalized vector solution of Bessel
beams could be solved easily [5]. Then we could derive
zero-order TM mode Bessel beams (shorten as Bessel
beams later), or namely zero-order radially polarized
wave, in the free space from the generalized solution (as
shown in Fig. 1):

Er ¼ i2aJ1 arð Þ exp ibzð Þ,

Ej ¼ 0,

Ez ¼ �a2J1 arð Þ exp ibzð Þ=b, ð4Þ

where r, z are two cylindrical coordinates, a2 þ b2 ¼ k2

and k is wave vector of a monochromatic wave.
Furthermore, magnetic induction of Bessel beams can
be written as

Br ¼ Bz ¼ 0,

Bj ¼ i2J1 arð Þ exp ibzð Þ=v, ð5Þ

where v is the optical velocity in the considered medium.
Hence, it is clearly shown that the transversal distribu-
tion of Bessel beams keeps unchanged along the z

direction, which is nondiffracting property of Bessel
beams in free space. And average energy flow Saverage of

Bessel beams is only along the z direction, which
indicates that energy propagating direction of Bessel
beams is z direction and is perpendicular to its equiphase
surface.

3. Numerical model of Bessel beams in FDTD

Using a commercial FDTD package (Remcom
XFDTD 6.1), either plane wave or electric dipole can
only be set as an excitation source. Hence, this
commercial package cannot be used directly to simulate
Bessel beams. However, we can build a numerical model
to achieve this goal indirectly in XFDTD based on the
theoretical analysis in the last section.

According to the Poisson integral formula of Bessel
function, Eq. (4) can be written as

Er ¼
a exp ibzð Þ

2p

Z 2p

0

eiar cos y cos ydy,

Ez ¼ �
a2 exp ibzð Þ

b2p

Z 2p

0

eiar cos y dy. ð6Þ

By defining a ¼ k sinj and b ¼ k cos j, Eq. (5) can
be expressed as plane waves with cylindrical vector
symmetry are interfered to generate a Bessel beams (as
shown in Fig. 2). So incident plane waves with
cylindrical vector symmetry are set with an identical
source-free FDTD model, which is used to calculate
time and again. Finally, we develop a Matlab program
to superpose the calculated results of complex amplitude
to form the complex amplitude of Bessel beams after
compensating phase difference among plane waves as
post-processing of XFDTD calculation.

Validation for this model based on XFDTD program
could be confirmed by comparing the simulation result
with theoretical one in the free space as analyzed
previously. The incident optical waves are linear
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Fig. 1. Theoretical result of intensity distribution of Bessel

beams in transversal and longitudinal component

ða ¼ k sin 601Þ.
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