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Near-field hexagonal array illumination based on fractional Talbot effect
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Abstract

Hexagonal array is a basic structure widely exists in nature and adopted by optoelectronic device. A phase plate
based on the fractional Talbot effect that converts a single expanded laser beam into a regular hexagonal array of
uniformly illuminated apertures with virtually 100% efficiency is presented. The uniform hexagonal array illumination
with a fill factor of 1/12 is demonstrated by the computer simulation.
r 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

The hexagonal array encircles a maximum area with
the shortest boundary length of any equilateral polygon
array. It is a nature-preferred economical pattern, such
as a bee’s honeycomb, carbon dioxide. And it has been
widely used in optical devices such as fiber couplers [1],
gradient-index rods [2], photonic delay lines [3], and
cellular logic image processors [4] in optical computing.
It is a nonorthogonal periodic array that cannot be
represented by orthogonal arrays. Recently, Peng Xi
et al. [5] have studied a hexagonal array illumination
based on a phase gratings with 0 and p phase difference.
It is the unique property of the hexagonal array to give
an array illumination in this way. Also the hexagonal
array is a periodic array, so we can get the array
illumination by the fractional Talbot effects as other
periodic arrays [6–8].

The Talbot array illuminators (TAIs) are periodic
phase diffractive elements, which can be designed and

manufactured based on the theory of the fractional
Talbot effect. Because it can effectively realize the high
speed and concurrent optical operation, TAIs have
broad applications in areas that include optical inter-
connection, optical computing and optoelectronic pro-
cessing. Lohmann [6] and Thomas [7] were among the
first to describe array illumination based on the
fractional Talbot effect with experimental demonstra-
tions at (1/4)ZT and (1/6)ZT, where ZT ¼ 2T2/l is the
Talbot distance. After that, many researchers presented
equations which can be used to calculate the diffraction
field at the fractional Talbot distance, such as Leger and
Swanson [8], Liu [9], Arrizon and Ojeda-Castaneda
[10,11], Zhou et al. [12,13]. But all those equations are
used to calculate the one-dimensional grating or the
two-dimensional (2D) array obtained by two orthogonal
gratings. We are interested in the study of the fractional
Talbot effect of the array that is obtained by two
nonorthogonal gratings, which is basic to the new type
array illuminator such as hexagonal array illuminator.

In Section 2, we present a mathematical description of
the hexagonal array and prove the self-image of it. In
Section 3, we analyze the fractional Talbot effect of the
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hexagonal array with different fill factor in detail.
Finally, we give a calculated phase distribution in the
fractional Talbot plane of the hexagonal array with fill
factor of 1/12, with which a hexagonal array illumina-
tion can be obtained.

2. The Talbot effect of 2D amplitude-type

hexagonal array

As shown by Fig. 1, in the amplitude-type hexagonal
array a black hexagon corresponds to luminescence and
a white hexagon corresponds to nonluminescence.
Assuming that the amplitude transmittance of the
hexagonal array is

tðx; yÞ ¼ tcðx; yÞnjðx; yÞ, (1)

where
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is the amplitude transmittance of the hexagonal cell, the
length of the hexagonal lateral is d/2,
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is the lattice-generating function, which can generate an
spot array of period T in the two directions that parallel
to the line
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x� y ¼ 0, � denotes the
convolution operation.

The amplitude-type hexagonal array is normally
illuminated by a unit-amplitude plane wave. We use
the Fresnel transform formula to evaluate the amplitude
distribution of the observation plane at distance z. The
Fresnel transform of a two-dimensional (2D) function is
defined by a convolution with a scaled quadratic phase
function

f ðx; y; zÞ ¼
exp jkzð Þ

jlz
tcðx; yÞnDðx; yÞ, (2)

where D(x, y) ¼ j(x, y)�h(x, y), h(x, y) ¼ exp[jp(x2+
y2)/lz] is the optical transfer function in the Fresnel
domain. We can write the comb function in terms of the

Fourier series of delta function, so j(x, y) is
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According to convolution theorem and the property of
the delta function, we can compute D(x, y) as follows:
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We define a new function as

Cðn;mÞ ¼ exp �j2p
z

T2=2l
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and n2 þm2 �mn

is integer. The inverse Fourier transform in Eq. (3) can
be evaluated using the Fourier series expression for delta
function. Hence D(x, y) becomes
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Evaluate the integration of Eq. (4), finally we can obtain
the expression of D(x, y) as follows:
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Obviously, if z ¼ lT2/2l, l is integer, we can obtain the
following terms:
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It is a spot array same as the spot distribution described
by function j(x, y). Therefore, the Talbot distance of the
amplitude-type hexagonal array is zT ¼ T2/2l, where T

is the above period of the lattice, l is the wavelength of
the illuminated light.

ARTICLE IN PRESS

tc(x, y) φ (x, y) t(x, y)= tc(x, y)* φ (x, y) 

* 
T

m=1

n=0 n=-1n=1 

m=0 m=-1

d 

Fig. 1. The generation of the 2D hexagonal array, � denotes

the convolution operation.
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