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Abstract

Starting from the Rayleigh–Sommerfeld diffraction integral and without invoking the paraxial approximation,
analytical expressions for the field distribution, far-field power spectrum and temporal far-field distribution of chirped
Gaussian pulses diffracted at a circular aperture are derived, which enables us to study the spectral anomalous
behavior of diffracted chirped Gaussian pulses in the far field. The potential applications of spectral anomalies of
ultrashort pulses are discussed. It is found that at the critical angle the spectral switch appears. The frequency
difference between the two equal heights of spectral switches increases and the corresponding critical diffraction angle
slightly increases as the chirp parameter increases and pulse duration decreases. In a certain region of the truncation
parameter, the critical angle decreases with increasing truncation parameter. By suitably varying the pulse duration,
chirp parameter and truncation parameter, information encoding and transmission are achievable in the use of chirped
Gaussian pulses.
r 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

There has been much interest in singular optics, which
deals with a variety of effects in spatially coherent
monochromatic wavefields at points of zero intensity,
where the phase becomes indeterminate [1]. Recently,
the subject of singular optics has been extended to
spatially coherent, polychromatic wavefields and par-
tially coherent quasi-monochromatic wavefields [2].
Specifically, the spectral anomalies near phase singula-
rities in polychromatic beams have been extensively
studied both theoretically and experimentally [3–8].

However, most of the works in the spectral anomalies
have been restricted to the polychromatic steady-state
beams within the framework of the paraxial approxima-
tion. The aim of the present paper is to study spectral
anomalies near phase singularities of chirped Gaussian
pulses diffracted at a circular aperture and their
potential applications. In Section 2, starting from the
Rayleigh–Sommerfeld diffraction integral, the closed-
form expressions for the field distribution, far-field
power spectrum and temporal far-field distribution of
ultrashort chirped Gaussian pulses diffracted at a
circular aperture are derived and analyzed. Section 3
presents numerical calculation results and analyses of
spectral anomalies of diffracted chirped Gaussian pulses
in the far field. The potential applications of spectral
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anomalies of ultrashort pulses in the information
encoding and transmission are discussed in Section 4.
Finally, Section 5 summarizes the main results obtained
in this paper.

2. Basic equations

Assume that in the cylindrical coordinate system at
the plane z ¼ 0 there is a Gaussian pulse of the form

E0ðr0; 0;oÞ ¼ SðoÞ expð�r20=w2
0Þ, (1)

where S(o) denotes the original spectrum on the axis
and w0 is the waist width that is assumed to be
independent of the frequency o [9]. The Gaussian pulse
passes through a circular aperture of the radius a at the
plane z ¼ 0. According to the Rayleigh–Sommerfeld
diffraction integral, the field in the half-space z40 reads
as
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where cos y ¼ z/r, r ¼ (r2+z2)1/2, y is the diffraction
angle and k is the wave number related to the frequency
o and speed of light in vacuum c by k ¼ o/c. It is noted
that the paraxial approximation is not used in Eq. (2).
As a result, Eq. (2) is applicable to the more general
case.

The substitution from Eq. (1) into Eq. (2) yields
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with J0( � ) being the zeroth-order Bessel function.
The integration of Eq. (3) leads to

Eðr; y;oÞ ¼ ikSðoÞ cos y
e�ikr
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where G(d,d) denotes the incomplete gamma function,
d ¼ a/w0 is the truncation parameter and z0 ¼ kw0

2/2 is
the Rayleigh length. Eq. (4) is the analytical propagation
equation of ultrashort Gaussian pulses in the frequency
domain, which is applicable to both Fresnel and
Fraunhofer regions.

In the far-field approximation, Eq. (4) simplifies to

Eðr; y;oÞ ¼ ikSðoÞ cos y
e�ikr
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The power spectrum in the far field turns out to be

jEðr; y;oÞj2 ¼ jSðoÞj2Mðr; y;oÞ, (6)

where
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is the spectral modifier describing how the aperture
diffraction modifies the original spectrum S(o).

Suppose that the incident pulse takes a chirped
Gaussian form [10]

AðtÞ ¼ exp �
ð1þ iCÞt2

2T2

� �
expð�ioctÞ, (8)

where T is the pulse duration defined as the half-width
at 1/e intensity point, and is related to the full-width
at half-maximum (FWHM) by TFWHM ¼ 2T(ln 2)1/2,
oc is the carrier frequency and C is the chirp
parameter.

Making use of the Fourier transform of A(t), we
obtain the original spectrum
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On substituting from Eq. (9) into Eq. (6), the power
spectrum of chirped Gaussian pulses in the far field
reads as
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Eq. (10) indicates that jE(r, y, o)j2 depends on the
chirp parameter C, pulse duration T, truncation
parameter d and diffraction angle y.
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