

Available online at www.sciencedirect.com

Chinese Journal of Natural Medicines 2017, 15(3): 0220-0224

Chinese Journal of Natural Medicines

Two new steroidal saponins isolated from Anemarrhena asphodeloides

SUN Xing-Huan, ZHU Fu-Tao, ZHANG Yu-Wei, CHEN Fang-Fang, YU Yun, SONG Ning-Ning, HUANG Xue-Feng^{*}

State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China

Available online 20 Mar. 2017

[ABSTRACT] Two new steroidal saponins, named timosaponin P (1) and timosaponin Q (2), were isolated from the rhizome parts of *Anemarrhena asphodeloides* Bunge using various chromatographic methods. Their structures and absolute configurations were elucidated by a combination of spectroscopic and spectrometric data, including 1D, 2D NMR, HR-ESI-MS and ECD calculations, and this is the first time the absolute configuration of C-23 of steroidal saponin was confirmed by ECD calculations.

KEY WORDS] Anemarrhena asphodeloides; Timosaponin P; Timosaponin Q; ECD; Steroidal saponin; Absolute configurationCLC Number] R284[Document code] A[Article ID] 2095-6975(2017)03-0220-05

Introduction

Anemarrhena asphodeloides Bunge. (A. asphodeloides), belonging to the family Liliaceae, is a perennial herb plant mainly distributed in China, Korea, Mongolia and other east Asian region. Previous pharmacological studies indicated that A. asphodeloides has beneficial effects on many central nervous system diseases ^[1-4], blood system diseases ^[5-6], antitumor ^[7-8] and anti-oxidation ^[9]. Steroidal saponins were the main components in A. asphodeloides ^[10], up to the present, 53 steroid saponins have been isolated from it, of which some have displayed markedly anticancer activity ^[7, 11-14]. In a continued effort to search for new potential anti-cancer bioactive compounds from this plant, an investigation of the chemical constituents from A. asphodeloides was undertaken, and this has led to the isolation of two new steroid saponins.

Results and Discussion

Timosaponin P (1) was isolated as a white amorphous powder, it gave a positive reaction to Liebermann-Burchard, and it could be deduced to be furostanol saponin on the basis of colour reaction with Ehrlich's spray reagent on TLC. The molecular formula, C45H74O19, was deduced from its HR-ESI-MS data $(m/z 941.471 8 [M + Na]^+$, Calcd. for $C_{45}H_{74}O_{19}Na$, 941.471 7) and ¹³C NMR (Table 1), implying nine degrees of unsaturation. The ¹H NMR spectrum of 1 (Table 1) showed three singlet methyl proton signals at $\delta_{\rm H}$ 0.70 (3H, s, H-18), 0.99 (3H, s, H-19), and 1.72 (3H, s, H-21), and one doublet methyl proton signal at $\delta_{\rm H}$ 1.17 (3H, d, J = 6.5Hz, H-27). Three anomeric proton signals at $\delta_{\rm H}$ 5.29 (1H, d, J = 7.7 Hz), 4.91 (1H, d, J = 7.6 Hz), and 4.86 (1H, d, J = 7.7Hz). The ¹³C NMR data of **1** showed four methyl groups at δ_{C} 24.0, 18.0, 14.5 and 11.7. The downfield-shifted carbonyl carbon at δ_C 154.1 (C-22), δ_C 105.2 (C-20), accounting for the presence of the double bond between C-20 and C-22. There are three anomeric carbons at δ_{C} 102.6 (Gal C-1'), 106.1 (Glc C-1") and 105.3 (Glc C-1""). Hence, compound 1 can be regarded as a furostanol saponins with three hexose residues and a double bond between C-20 and C-22. Comparing the spectrometric data of 1 with Timosaponin BIII, it can be found that the same partial structure with rings A, B, C, and D, the main difference is the molecular weight of compound 1 has more 16 than Timosaponin BIII can be regarded

[[]Received on] 17-May-2016

[[]Research funding] This work was supported by the National Natural Science Foundation of China (No. 81573560) and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. G12123).

^{[*}Corresponding author] Tel: 86-25-85301528, E-mail: hxf@cpu.edu.cn

These authors have no conflict of interest to declare. Published by Elsevier B.V. All rights reserved

Na	1			2		
No.	δ_{H}	δc	HMBC	δ_{H}	δc	HMBC
1	1.82 (m), 1.48 (m)	31.0	H-5, H-19	1.85 (m), 1.48 (m)	31.0	H-3, H-19
2	1.98 (m), 1.48 (m)	27.0		1.98 (m), 1.48 (m)	27.1	
3	4.35 (m)	75.6	H-1'	4.33 (m)	75.6	H-1'
4	1.86 (m)	30.8		1.82 (m)	30.8	Н-3
5	2.16 (m)	37.0	, H-19	2.15 (m)	37.0	H-19
6	1.47 (m)	26.8		1.41 (m)	26.8	
7	1.99 (m), 1.83 (m)	26.8		1.96 (m), 1.83 (m)	26.5	H-9
8	1.41 (m)	35.1	H-9	1.31 (m)	34.9	
9	1.28 (m)	40.2	H-19, H-12	1.26 (m)	40.7	H-11, H-12, H-19
10		35.2	H-9, H-19	-	35.2	H-19
11	1.33 (m), 1.21 (m)	21.3		1.32 (m), 1.29 (m)	20.6	
12	1.27 (m), 1.16 (m)	40.1	H-18	1.81 (m), 1.18 (m)	39.6	H-11, H-17, H-18
13	_	43.9	H-14, H-16, H-17, H-18	_	40.7	H-14, H-17, H-18, H-1
14	0.83 (m)	54.8	H-18	0.88 (m)	56.6	H-18
15	2.08 (m), 1.45 (m)	34.4		1.98 (m), 1.41 (m)	34.8	
16	4.87 (m)	84.7		4.98 (m)	84.0	
17	2.50 (m)	65.0	H-15, H-18, H-21	2.11 (m)	66.9	H-18, H-21, H-15
18	0.70 (s)	14.5	H-14, H-16, H-17	0.85 (s)	13.8	H-14, H-17
19	0.99 (s)	24.0		0.98 (s)	24.0	
20		105.2	H-17, H-21		105.2	
21	1.72 (s)	11.7		1.40 (s)	15.3	H-17
22	-	154.1	H-17, H-21, H-24	-	157.3	H-17, H-21 H-24, H-25
23	4.96 (m)	63.9	H-24	4.89 (m)	81.9	H-21, H-24, H-OCH ₃
24	2.14 (m), 2.05 (m)	39.7	H-26, H-27, H-23	2.15 (m), 2.09 (m)	35.2	H-25, H-26, H-27
25	1.87 (m)	31.0	H-24, H-26, H-27	2.2 (m)	29.6	H-24, H-26, H-27
26	4.24 (m), 3.67 (m)	75.2	H-1"", H-27, H-24	4.15 (m), 3.56 (m)	75.2	H-25, H-27, H-1"
27	1.17 (d, 6.5)	18.0	H-24, H-26	1.11 (d, 6.5)	17.5	H-25, H-26
OCH_3				3.18 (s)	48.8	
C-3						
Gal-1'	4.91 (d, 7.6)	102.6	H-2', H-3'	4.99 (d, 7.0)	102.6	H-2', H-5'
2'	4.67 (m)	81.9	H-4', H-1"	4.63 (m)	81.9	H-4'
3'	4.03 (m)	76.6		4.21 (m)	76.6	
4'	4.57 (m)	69.9		4.54 (m)	69.9	
5'	4.07 (m)	76.9	H-6'	4.01 (m)	76.9	
6'	4.44 (m)	62.2		4.32 (m)	62.2	H-5'
Glc-1"	5.29 (d, 7.7)	106.1	H-2'	5.29 (d, 7.5)	106.1	H-2', H-2"
2"	4.35 (m)	75.6	H-3"	4.08 (m)	75.6	
3"	4.19 (m)	78.1		4.89 (m)	82.4	H-1", H-4"
4"	4.18 (m)	71.7	H-3"	4.04 (m)	75.2	
5"	3.86 (m)	78.4		4.34 (m)	78.1	
6"	4.53 (m), 4.46 (m)	62.9		4.51 (m), 4.04 (m)	62.8	H-4"
C-26						
Glc-1"	4.86 (d, 7.7)	105.3	H-2'''	4.89 (d, 7.5)	105.2	H-26
2'''	4.02 (m)	75.2		4.32 (m)	75.3	
3"'	4.23 (m)	78.5	H-2'''	4.19 (m)	78.1	H-1'", H-4'''
4'''	4.27 (m)	71.8	Н-2''', Н-3''', Н-5'''	4.18 (m)	71.8	
5'''	4.24 (m)	78.6	H-1'''	4.86 (m)	78.4	H-6'''
6'''	4.44 (m), 4.35 (m)	62.9		4.42 (m), 4.30 (m)	62.8	

Table 1 ¹H (500 MHz) and ¹³C (125 MHz) spectral data for compounds 1 and 2 (in pyridine-d₅)

Download English Version:

https://daneshyari.com/en/article/8527546

Download Persian Version:

https://daneshyari.com/article/8527546

Daneshyari.com