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A variant on eigenmode method in periodic crossed gratings
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Abstract

The eigenvalue problem discussed in Noponen and Turunen [Eigenmode method for electromagnetic synthesis of
diffractive elements with three-dimensional profiles, J. Opt. Soc. Am. A 11 (1994) 2494–2502] for crossed gratings is
analyzed in a different way using the three components of the electric field instead of the components Ex,y, Hx,y. As a
result, half as many eigenvectors are needed.
r 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

The methods developed to describe wave propagation
in crossed gratings [1] are still confronted to the problem
of computer resources [2]. We present a variant of the
rigorous theory of binary-surface relief gratings [3]
developed to accomodate three-dimensional (3D) modu-
lated profiles and, this variant has the advantage to
halve the dimensions of the matrix eigenvalue problem
generated by Maxwell’s equations in such media. The
numerical implantation of the corresponding formalism
is not discussed in this theoretical work and we
closely follow the notations used in [3], the modulated
grazing region periodic in x and y with dx, dy periods,
respectively, is located in the slab 0ozoh. We work
with the three components of the electric field while the
four components Ex,y, Hx,y are used in [2,3].

With the time dependence exp(�iot) assumed, the
Maxwell equations are inside the slab

r ^ E � iom0H ¼ 0; r ^H � io�E ¼ 0, (1a)

r:H ¼ 0; r:�E ¼ 0 (1b)

and the permittivity e is [3] with p, q arbitrary integers

� ¼ �0
X
p;q

�p;q exp½2iðpx=dx þ qy=dyÞ�. (2)

We get from (1a) the Helmholtz equation satisfied by
the electric field

DE þ o2m0�E � rðr:�EÞ ¼ 0 (3)

we look for the solutions of Maxwell’s equations in the
form, m, n being arbitrary integers

fE;HgðxÞ ¼
X
m;n

fEmn;Hm;ngfm;nðxÞ;

fm;nðxÞ ¼ exp½iðamxþ bnyþ gzÞ� ð4Þ

with am ¼ 2pm/dx, bn ¼ 2pn/dy. Then

DE ¼ �
X
m;n

X
m;n

G2
m;nEm;njm;nðxÞ,

G2
m;n ¼ a2m þ b2n þ g2, ð5aÞ
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r:�E ¼ i
X
m;n

ðamEm;n;x þ bnEm;n;y þ gEm;n;zÞjm;nðxÞ,

(5b)

�E ¼ �0
X
m;n

X
p;q

�p;qEm;njm;nðxÞ exp½2iðpx=dx þ py=dyÞ�

¼ �0
X
m;n

X
p;q

�m�p;n�qEp;qjm;nðxÞ. ð5cÞ

Substituting (5a–c) into (3) gives the set of equations
in which k2 ¼ o2m0e0

G2
mnEmn;x � k2

X
pq

�m�p;n�qEpq;x � amð. . .Þ ¼ 0,

G2
mnEmn;y � k2

X
pq

�m�p;n�qEpq;y � bnð. . .Þ ¼ 0,

G2
mnEmn;z � k2

X
pq

�m�p;n�qEpq;z � gð. . .Þ ¼ 0, ð6Þ

ð. . .Þ ¼ amEpq;x þ bnEpq;y þ gEpq;z. (7)

Now, letCm,n denote the two-dimensional (2D) vector
with the components cmn,x, cmn,y

cmn;x ¼ Emn;x � amg�1Emn;z,

cmn;y ¼ Emn;y � bng
�1Emn;z. ð8Þ

Then substituting into the first two Eqs. (6) the term
(y) obtained from the third one and taking into account
(8), we get the eigenvalue problem we have now to solve

G2
mnCmn � k2

X
pq
�m�p;n�qCpq ¼ 0. (9)

2. Eigenvalues and eigenvectors

In a numerical implementation of (9), the integers m,
p and n, q would be compelled to take finite values from
�M to M for m, p; from �N to N for n, q and, changing
S into S0 to mark this limitation, we may write (9)
(dmpdnq are Kronecker symbols)

X0

pq

ðG2
pqdmpdnp � k2�m�p;n�qÞCpq ¼ 0. (10)

Then, we introduce the direct sums

r ¼ m� n; s ¼ p� q (11)

the integers r, s take L ¼ (2M+1)(2N+1) values and
with the notations

Gys ¼ Gpq; dyrs ¼ dmpdnq,

�yr�s ¼ �m�p;n�p; Cys ¼ Cpq ð11aÞ

Eq. (10) becomes

XL

s¼1

Ar;sCys ¼ 0; r ¼ 1; 2; . . . ;L; Ar;s ¼ ðGys Þ
2dyrs � k2�yr�s

(12)

that we may write ACy ¼ 0 with nonnull solutions if
detA ¼ 0, a condition supplying L eigen values (Gpq,l)

2

from which we get according to the definition (5a) of
G2

p,q, L expressions for g noted from now on gl,
l ¼ 1,2,y,L.

As a simple illustration, suppose M ¼ N ¼ 1 so that
L ¼ 9. Since m, n, p, q take the values 1, 0, �1, the nine
components of Cy are

Cy1 ¼ c1;1; Cy2 ¼ c1;0 � � �C
y

8 ¼ c�1;0; Cy9 ¼ c�1;�1
(13)

while the 9� 9 matrix A is

G2
1;1 � k2�0;0 �k2�0;1 �k2�0;2 . . . �k2�2;1 �k2�2;2

�k2�0;�1 G2
1;0 � k2�0;0 �k2�2;0 . . . �k2�2;0 �k2�2;1

..

. ..
. ..

.
. . . ..

. ..
.

�k2��2;2 �k2��2;1 �k2��2;0 . . . �k2�0;�1 G2
�1;�1 ��k2�0;0

2
6666664

3
7777775

(14)

Let Cl denote the L eigenvectors of (12). Then, with u
written for x,y,z we may expand the components Emn,u

of the vector field Emn, on the Cl basis so that

EuðxÞ ¼
X0

mn

Emn;uðxÞ ¼
X0

mn

XL

l¼1
emnl;ufmnlðxÞCl , (15)

fmnlðxÞ ¼ exp½iðamxþ bnyþ g1zÞ�, (15a)

with according to (8)

emnl;x ¼ omnl þ amg�11 emnl;z,

emnl;y ¼ omnl þ bng
�1
1 emnl;z ð16Þ

so that for m,n fixed, the fields (15) depend on 2L

arbitrary amplitudes omnl and emnl,z.
But these fields are solutions of the Helmholtz Eq. (3)

and we have still to impose that they satisfy the
divergence Eq. (1b) r.eE ¼ 0. According to (5c) and
(15) we have

X0

mn

X0

pq

XL

l¼1

�m�p;n�qðamepql;x þ bnepql;y þ g1epql;zÞ

�fmnlðxÞC1 ¼ 0 ð17Þ

implying
X0

pq

�m�p;n�qðamepql;x þ bnepql;y þ g1epql;zÞ ¼ 0,

l ¼ 1; 2; 3; . . .L, ð17aÞ

which are L constraints on the field amplitudes. Then,
for m,n fixed, the electric field has L and on the whole L2
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