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A B S T R A C T

The bile acid-phospholipid conjugate ursodeoxycholyl oleoyl-lysophophatidylethanolamide (UDCA-18:1LPE) is
an anti-inflammatory and anti-fibrotic agent as previously shown in cultured hepatocytes and hepatic stellate
cells as well as in in vivo models of liver injury. We hypothesize that UDCA-18:1LPE may directly inhibit the
activation of immune cells. We found that UDCA-18:1LPE was capable of inhibiting the migration of phorbol
ester-differentiated human THP-1 cells. We examined anti-inflammatory activity of UDCA-18:1LPE during ac-
tivation of THP1-derived macrophages. Treatment of these macrophages by bacterial lipopolysaccharide (LPS)
for 24 h induced the release of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. This release was markedly
inhibited by pretreatment with UDCA-18:1LPE by ~ 65–90%. Derivatives with a different fatty-acid chain in LPE
moiety also exhibited anti-inflammatory property. Western blotting and indirect immunofluorescence analyses
revealed that UDCA-18:1LPE attenuated the expression of phosphorylated p38, MKK4/MKK7, JNK1/2, and c-
Jun as well as nuclear translocation of NF-κB by ~ 22–86%. After LPS stimulation, the Toll-like receptor adaptor
proteins, myeloid differentiation factor 88 and TNF receptor associated factor 6, were recruited into lipid rafts
and UDCA-18:1LPE inhibited this recruitment by 22% and 58%, respectively. Moreover, LPS treatment caused a
decrease of the known cytoprotective lysophosphatidylcholine species containing polyunsaturated fatty acids by
43%, and UDCA-18:1LPE co-treatment reversed this decrease. In conclusion, UDCA-18:1LPE and derivatives
inhibited LPS inflammatory response by interfering with Toll-like receptor signaling in lipid rafts leading to an
inhibition of MAPK and NF-κB activation. These conjugates may represent a class of lead compounds for de-
velopment of anti-inflammatory drugs.

1. Introduction

Sustained homeostatic alteration with simultaneous activation of
inflammatory pathways are central events occurring in many chronic
diseases, such as liver disease, obesity, autoimmune disorders, meta-
bolic syndromes, atherosclerosis, and cancer (Hansson et al., 2002; Sun
and Karin, 2012). The prevalence of chronic diseases is increasing thus
constituting public health problems worldwide and cost escalation for
the development of anti-inflammatory drugs (DiMasi et al., 2003).
Among these drugs, biologically active lipids, such as polyunsaturated
fatty acids (PUFAs) (Lordan et al., 2011; Simopoulos, 2004), sterols
(Bouic, 2002; Mencarelli et al., 2009) and phospholipids (PL)
(Küllenberg et al., 2012; Stremmel and Gauss, 2013), also represent

anti-inflammatory agents by targeting multiple tissues (Crielaard et al.,
2012). With lipid-based design strategy, we developed a specific drug-
targeting technology by a conjugation between a PL and a sterol, and
for the latter a protective bile acid was chosen. Our first synthesized
conjugate was ursodeoxycholyl oleoyl-lysophosphatidylethanolamide
(UDCA-18:1LPE) (Chamulitrat et al., 2009). While UDCA-LPE inhibits
apoptosis in hepatocytes (Chamulitrat et al., 2009; Pathil et al., 2011)
and biliary epithelial cells (Sellinger et al., 2015), it also inhibits in-
flammatory response in Kupffer cells (Pathil et al., 2011), and fibro-
genic activation in hepatic stellate cells (Pathil et al., 2014). Thus, the
protective effect of UDCA-LPE observed in many cellular systems ren-
ders it appropriate for treatment of inflammatory diseases as previously
shown in fulminant hepatitis (Pathil et al., 2011; Utaipan et al., 2017),
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non-alcoholic steatohepatitis (Pathil et al., 2012, 2014, 2015), and
ischemia reperfusion (Wang et al., 2015) in vivo models.

It is noted that UDCA-18:1LPE exhibits protection as an intact
conjugate whereby the parental UDCA and 18:1LPE do not show pro-
tection as shown in in vitro (Chamulitrat et al., 2009) and in vivo
(Pathil et al., 2015) experiments. This provides a hint that the hydro-
phobicity of the conjugate may be crucial in rendering its ability to
interact with or accumulate into membranes (Fahey et al., 1995;
Esteves et al., 2015). This may be the molecular basis for UDCA-
18:1LPE as a drug candidate for membrane lipid therapy (Escribá et al.,
2015), particularly in the membranes of macrophages. Here, we aimed
to test the efficacies of UDCA-LPE in lipopolysaccharide (LPS)-activated
human THP-1-derived macrophages and determined the underlying
mechanisms involved in the modulation of inflammatory response via
receptor signaling (Vallabhapurapu and Karin, 2009) and lipid-raft
membranes (Simons and Toomre, 2000). As UDCA-18:1LPE is able to
modulate hepatocellular PL (Chamulitrat et al., 2012, 2013; Pathil
et al., 2015), the effects of UDCA-18:1LPE on PL profiles of activated
macrophages were also determined.

2. Materials and methods

2.1. Chemicals

All PL standards, 14:0 LPE, 16:0 LPE, and 18:1 LPE were obtained
from Avanti Lipids, Inc, (Alabaster, AL, USA). IFN-γ was obtained from
Immuno Tools GmbH, Friesoythe, Germany. L-α-lysophosphatidylcho-
line (LPC) type V from bovine brain, LPS from E. Coli 055:B5, and all
other chemicals were obtained from Sigma Aldrich (Taufkirchen,
Germany) unless stated otherwise.

2.2. Synthesis of UDCA-LPE and derivatives

The synthesis of UDCA-18:1LPE was performed by ChemCon
(Freiburg, Germany) using the published procedures (Chamulitrat
et al., 2009). Custom syntheses of UCDA-PE (UDCA-18:1,18:1PE),
UDCA-14:0LPE, UDCA-16:0LPE, UDCA-18:0LPE, UDCA-18:3LPE,
UDCA-20:4LPE, and chenodeoxycholic acid (CDCA)−18:1LPE were
performed by Med Chem 101 (Conshohocken, PA, USA).

2.3. Cell culture

THP-1 human monocytic cell line (Cell Line Service GmbH,
Eppelheim, Germany) was kindly provided by Dr. W. Chunglok of
Walailak University, Thailand. Cells were cultivated in suspension in
RPMI-1640 medium (Gibco®, Darmstadt, Germany), supplemented with
10% heat-inactivated FBS (Gibco®), 100 U/ml penicillin, and 100 µg/ml
streptomycin at 37 °C, 5% CO2. THP-1 cells were differentiated into
macrophages by treatment with 100 nM phorbol 12-myristate 13-
acetate (PMA) for 72 h. Differentiated cells were pretreated with UDCA-
LPE for 1 h followed by treatment with 100 ng/ml LPS with or without
5 pg/ml IFN-γ. Treated cells were harvested 24 h later.

2.4. Cytotoxicity assay

Cell viability in THP-1-derived macrophages was determined by 3-
(4,5-dimethylthiazol-2-yl)− 2,5-diphenyltetrazolium bromide (MTT)
assay. After treatment, differentiated THP-1 cells (1× 105 cells/well in
24-well plates) were incubated overnight in fresh medium and subse-
quently with 0.2 mg/ml MTT for 4 h at 37 °C. The solution was dis-
carded and formazan crystals were solubilized in 500 µl DMSO per well.
The absorbance of the formazan solution was measured using a mi-
croplate reader (Thermo Fisher, USA) at 560 nm and 670 nm (for
background subtraction). Cell viability was calculated according to:
Cell viability (%) = [(Abs treated sample/ Abs untreated sample)
× 100].

2.5. Enzyme linked immunoassays

Differentiated THP-1 cells (1× 105 cells/well) seeded in a 24-well
plate were pretreated with UDCA-18:1LPE or derivatives and subse-
quently treated with 100 ng/ml LPS for 24 h. Proinflammatory cyto-
kines, TNF-α, IL-6, and IL-1β in cultured medium were quantified by
using enzyme-linked immunosorbent (ELISA) kits obtained from
BioLegend (Cambridge, UK).

2.6. Cell migration assay

Migration of THP-1-derived macrophages was determined by a
wound-closure assay (Liang et al., 2007). Briefly, THP-1 cells (1× 105

cells/well) seeded in a 24-well plate were differentiated with 100 nM
PMA for 72 h. Confluent cells were washed twice with PBS and scrat-
ched by a sterile pipette tip to create a wound. Cells were subsequently
treated with UDCA-18:1LPE or a negative control tauro-UDCA at
50 μM. Cells were photographed at 4 h, 20 h, and 40 h after treatment.
Cropped pictures of the scratched areas were obtained by using Pho-
toshop and were processed for cell counts by using particle analysis of
Image J. Number of cells in scratched areas of each treatment group and
time point was obtained from 3 independent experiments.

2.7. NF-κB nuclear translocation assay

NF-κB nuclear translocation was studied by indirect immuno-
fluorescence. Cells with seeding density 1.5×105 cells/ml were dif-
ferentiated on 10-mm coverslips coated with gelatin. After treatment,
cells were fixed in ice-cold methanol. To avoid unspecific binding of
antibody, coverslips were treated with 1% BSA in PBS containing 0.01%
Tween-20 at RT for 10min. Cells were incubated with 1:200 anti-p65
NF-κB primary antibody (#8242, Cell Signaling, Frankfurt, Germany) at
RT for 1 h. After washing, cells were incubated with AlexaFluor 488
conjugated anti-rabbit IgG (A11034, Life Technologies) at RT for 1 h
followed by nuclear staining with 4′ 6-diamidino-2-phenylindole
(DAPI) (Sigma-Aldrich) for 10min. After washing, coverslips were
mounted with Entellan™ (Merck, Darmstadt, Germany). Images were
taken by an Olympus AX70 microscope (Olympus, Hamburg,
Germany). NF-κB nuclear positive cells were counted from ten random
fields with a total of 200–300 cells per cover slip. In each experiment,
quadruplicate cover slips were stained and counted, and 6 independent
experiments were carried out.

2.8. Western blotting

Differentiated THP-1 cells (4.8× 105 cells/well) seeded in a 6-well
plate were pretreated with 50 or 75 µM of UDCA-LPE for 1 h followed
by the treatment with 100 ng/ml LPS for 30min. Cells were lysed, and
protein concentrations were determined using Bio-Rad proteinDC kit
(Bio-Rad, Munich, Germany). Proteins were separated by SDS-PAGE
and transferred onto PVDF membranes. Blots were probed with a pri-
mary antibody against phospho-ERK1/2 (#9106), phospho-JNK1/2
(#4668), phospho-p38 (#9212), phospho-MKK-7 (#4171), phospho-
MKK-4 (#9151), phospho-c-Jun (#9261), phospho-ATF-2 (#9221),
MyD88 (#6483) or GAPDH (#2118) obtained from Cell Signaling
(Frankfurt, Germany). Antibodies against calnexin (sc-6465) and TRAF-
6 (sc-7221) were obtained from Santa Cruz Biotechnology (Heidelberg,
Germany), and flotilin-2 (610383) from Becton Dickinson (Heidelberg,
Germany). Washed blots were treated with a secondary antibody.
Proteins were visualized using Luminata Forte ECL (Millipore,
Darmstadt, Germany). Image J was used to quantify the density of
protein bands of the targets and loading control GAPDH, and the ratio
of protein target/GADPH was calculated.
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