Vielopsides A-E, five new guaiane-type sesquiterpenoid dimers from Xylopia vielana

Yang-Guo Xie ${ }^{\text {a }}$, Guo-jing Wu^{a}, Tao-fang Cheng ${ }^{\mathrm{a}}$, Sheng-lan Zhu ${ }^{\mathrm{a}}$, Shi-kai Yan ${ }^{\text {a }}$, Hui-zi Jin ${ }^{\mathrm{a}, *}$, Wei-dong Zhang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Shanghai Key Laboratory of Antimicrobias, New Drug Discovery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
${ }^{\mathrm{b}}$ School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China

ARTICLE INFO

Keywords:

Xylopia vielana
Sesquiterpenoid dimers NO

Abstract

Five new guaiane-type sesquiterpenoid dimers vielopsides A-E, connecting patterns through two direct $\mathrm{C}-\mathrm{C}$ bonds ($\mathrm{C}-2$ to $\mathrm{C}-2^{\prime}, \mathrm{C}-4$ to $\mathrm{C}-1^{\prime}$), were isolated from the roots of Xylopia vielana. Their absolute configurations were established by NOE analysis, the $\mathrm{Cu} \mathrm{K} \alpha$ X-ray crystallographic and circular dichroism (CD) experiment. Among them, compound 5 showed moderate activity IC_{50} values of $33.8 \mu \mathrm{M}$ on NO production in RAW 264.7 macrophages.

1. Introduction

The first phytochemical investigation of the genus Xylopia was traced back to 1982 [1]. Several diterpene adducts were isolated from X. emarginata and X. amazonica [2]. In a continuous research of the genus Xylopia, diverse bioactive components, such as alkaloids [3, 4], flavonoids [5], diterpenes [6], and sesquiterpene dimmers [7-9] were obtained. The leaves and roots of the plant have been used as a folk medicine for the treatment of antispasmodic disease, rheumatism, pain and malaria [10]. These results spurred us to further investigate the bioactive compounds from the genus Xylopia. Thus, we selected the roots of X. vielana, leading to the isolation of five new guaiane-type sesquiterpenoid dimers vielopsides A-E (Fig. 1). Herein, we reported its structural elucidation using 1D and 2D-NMR, X-ray analysis and CD experiments.

2. Results and discussion

Compound 1 was obtained as colorless needle crystals. It was assigned to have the molecular formula $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{6}$ in accordance with HRESI: $m / z 515.2418[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}^{+}$, 515.2404) analysis, indicating 13 degrees of unsaturation. The ${ }^{13} \mathrm{C}$ NMR and DEPT spectrum showed 30 carbon signals, including eight methyls, three methylenes, four methines and 15 quarternary carbons (Table 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 also gave corresponding proton signals: six methyls (singlets), two methyls (doublets), three methylenes
(multiplets), one olefinic (singlets) and four methane (multiplets). In combination with 2D-NMR suggested 1 displayed the presence of two asymmetry guaiane units (a and b). In HMBC spectrum, the cross-peaks from $\mathrm{H}-2$ to $\mathrm{C}-1 / \mathrm{C}-4$ and from $\mathrm{H}_{3}-15$ to $\mathrm{C}-3 / \mathrm{C}-4 / \mathrm{C}-5$ (Fig. 2) in unit 1a indicated that 1 possessed a five-membered ring (I). The presence of the seven-membered ring (II), connected with the five-membered (I) via a C-1/C-5 double bond, which was demonstrated by the HMBC crosspeaks from $\mathrm{H}-6$ to $\mathrm{C}-1 / \mathrm{C}-7 / \mathrm{C}-8 /$, from $\mathrm{H}-10$ to $\mathrm{C}-1 / \mathrm{C}-8 / \mathrm{C}-9$, from $\mathrm{H}_{2}-9$ to $\mathrm{C}-1 / \mathrm{C}-8 / \mathrm{C}-10$ and $\mathrm{H}_{3}-14$ to $\mathrm{C}-1 / \mathrm{C}-9 / \mathrm{C}-10$ (Fig. 2). Furthermore, the HMBC correlations from $\mathrm{H}-6$ to $\mathrm{C}-7 / \mathrm{C}-8 / \mathrm{C}-11 /$, from $\mathrm{H}_{3}-12$ to $\mathrm{C}-11 / \mathrm{C}-7$ and $\mathrm{H}_{3}-13$ to $\mathrm{C}-11 / \mathrm{C}-7$ indicated an another five-membered ring (III) was fused with the seven-membered ring (II) through a C-7/C-8 single bond (Fig. 2). The presence of a double oxygen bridge in the fivemembered ring (III) was on the basis of the chemical shift of C-8 (δ_{C} 102.8) and $\mathrm{C}-11$ ($\delta_{\mathrm{C}} 85.7$). So based on the above analysis, the unit 1 a was assigned as a guaiane-type sesquiterpenoid.

Similarly, unit 1b was also assigned as a guaiane-type sesquiterpenoid. The key HMBC correlations from $\mathrm{H}_{3}-15$ to $\mathrm{C}-1^{\prime}$, and $\mathrm{H}-2$ to $\mathrm{C}-2^{\prime}$ as well as the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY correlations (Fig. 2) from $\mathrm{H}-2 / \mathrm{H}-2^{\prime}$ indicated that units a and unit b should be linked via two direct $\mathrm{C}-\mathrm{C}$ bonds ($\mathrm{C}-2$ to C-2', C-4 to C-1') (Fig. 2). Accordingly, the planar structure of 1 was confirmed as shown in Fig. 2. The relative configuration was deduced by the NOESY experiments. The key NOE correlations of $\mathrm{H}-2^{\prime} / \mathrm{H}_{3}-14^{\prime}$, $\mathrm{H}-2 / \mathrm{H}_{3}-14, \mathrm{H}-2^{\prime} / \mathrm{H}-2$ implied same side similarity and were arbitrarily assigned as α-oriented, while the correlations of $\mathrm{H}-10^{\prime} / \mathrm{H}_{3}-15^{\prime}$ placed them on the opposite side. (Fig. 3). It was difficult to determine the

[^0]

1

2

5

3

6

Fig. 1. Chemical structures of compounds 1-6.

Table 1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of $\mathbf{1 - 5}$.

No	$1^{\text {a }}$		$2{ }^{\text {b }}$		$3{ }^{\text {c }}$		$4^{\text {d }}$		$5^{\text {d }}$	
	$\delta_{\text {C }}$	$\delta_{\text {H }}$								
1	143.2 s		144.3 s		148.6 s		141.4 s		144.9 s	
2	46.3 d	2.79 d (5.1)	48.3 d	3.18 dd (5.0, 1.9)	46.5 d	3.16 m	47.9 d	2.94 m	45.8 d	2.90 m
3	201.4 s		89.5 d	4.49 d (2.0)	55.1 t	1.98 m	90.1 d	4.53 d (2.0)	56.2 t	$\begin{aligned} & 1.95 \mathrm{dd}(8.5,1.6) \\ & 1.48 \mathrm{dd}(8.5,1.8) \end{aligned}$
						1.50 m				
4	57.9 s		56.8 s		56.6 s		58.7 s		58.3 s	
5	132.2 s		132.7 s		134.9 s		137.4 s		139.6 s	
6	109.1 d	5.46 s	111.2 d	5.62 s	110.5 d	5.70 s	25.8 t	3.25 d (16.6)	25.4 t	3.18 d (17.0)
								3.87 d (16.6)		2.70 d (17.0)
7	158.5 s		155.6 s		154.8 s		134.4 s		134.5 s	
8	102.8 s		105.2 s		103.1 s		203.6 s		204.1 s	
9	38.2 t	1.93 m	33.7 t	2.11 m	37.6 t	1.85 m	47.6 t	2.51 m	47.8 t	2.46 m
		1.63 t (13.3)		1.55 m		1.51 m				
10	31.8 d	2.54 m	30.5 d	2.10 m	30.8 d	2.27 m	32.9 d	2.94 m	32.5 d	2.24 m
11	85.7 s		85.3 s		84.5 s		141.0 s		140.4 s	
12	27.3 q	1.37 s	27.5 q	1.39 s	26.9 q	1.35 s	22.9 q	2.01 s	22.5 q	1.97 s
13	23.9 q	1.41 s	24.1 q	1.46 s	23.3 q	1.48 s	22.5 q	1.85 s	22.1 q	1.84 s
14	17.7 q	1.15 d (7.1)	18.6 q	1.14 d (6.9)	18.2 q	1.16 d (7.2)	19.3 q	1.01 d (7.0)	19.4 q	1.00 d (6.9)
15	9.2 q	1.52 s	13.7 q	1.63 s	15.1 q	1.61 s	14.5 q	1.59 s	16.1 q	1.52 s
1^{\prime}	58.3 s		62.1 s		62.2 s		62.3 s		62.4 s	
2^{\prime}	52.3 d	3.45 d (5.0)	56.2 d	3.13 m	55.9 d	3.08 m	55.7 d	3.11 m	54.7 d	2.78 m
3^{\prime}	206.6 s		209.1 s		209.3 s		207.6 s		208.1 s	
4^{\prime}	144.8 s		141.9 s		140.4 s		141.9 s		140.2 s	
5^{\prime}	171.6 s		173.2 s		175.2 s		171.8 s		173.4 s	
6^{\prime}	28.6 t	3.26 d (15.9)	30.9 t	3.49 d (14.4)	29.5 t	3.45 d (14.8)	30.6 t	3.57 d (14.0)	29.6 t	$3.05 \mathrm{~d}(14.6)$
		3.05 d (15.9)		3.05 d (14.4)		3.13 d (14.8)		3.02 d (14.0)		
$7 \prime$	132.2 s		128.5 s		130.9 s		128.9 s		131.3 s	
8^{\prime}	206.5 s		204.1 s		205.1 s		201.7 s		204.0 s	
9^{\prime}	49.3 t	2.27 dd (18.6, 2.7)	47.9 t	3.41 dd (12.1, 2.7)	49.3 t	2.89 m	48.3 t	3.36 m	50.1 t	$\begin{aligned} & 2.62 \mathrm{dd}(16.5,2.3) \\ & 2.20 \mathrm{~m} \end{aligned}$
		2.04 dd (18.6, 12.4)		2.28 dd (12.1, 6.4)		2.14 dd (15.4, 9.5)		2.33 m		
10^{\prime}	29.6 d	2.74 m	33.1 d	2.96 m	32.3 d	2.70 m	32.8 d	2.20 m	31.6 d	2.68 m
11^{\prime}	138.9 s		146.0 s		141.7 s		145.9 s		140.2 s	
12^{\prime}	21.6 q	1.77 s	22.9 q	2.06 s	21.4 q	1.89 s	23.6 q	2.12 s	22.8 q	1.85 s
13^{\prime}	20.3 q	1.81 s	22.6 q	1.93 s	21.0 q	1.91 s	23.4 q	1.97 s	22.7 q	1.90 s
14^{\prime}	16.4 q	0.90 d (6.8)	16.4 q	0.85 d (7.0)	17.5 q	1.01 d (6.9)	17.2 q	0.89 d (7.0)	19.4 q	1.06 d (6.9)
15^{\prime}	7.4 q	1.48 s	6.9 q	1.47 s	6.7 q	1.37 s	7.7 q	1.51 s	7.5 q	1.46 s
$1^{\prime \prime}$			170.2 s				170.1 s			
$2^{\prime \prime}$			20.4 q	2.10 s			21.2 q	2.08 s		

[^1]
https://daneshyari.com/en/article/8530427

Download Persian Version:

https://daneshyari.com/article/8530427

Daneshyari.com

[^0]: * Corresponding authors at: Shanghai Key Laboratory of Antimicrobias, New Drug Discovery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.

 E-mail addresses: kimhz@sjtu.edu.cn (H.-z. Jin), wdzhangy@hotmail.com (W.-d. Zhang).

[^1]: δ in ppm; J in Hz within parentheses; Measured at 125 MHz for ${ }^{13} \mathrm{C}$ NMR and 500 MHz for ${ }^{1} \mathrm{H}$ NMR in ${ }^{\text {a }} \mathrm{Chloroform}-\mathrm{d}: \mathrm{MeOH}$ 1:2; ${ }^{\mathrm{b}} \mathrm{Chloroform}-\mathrm{d}: \mathrm{MeOH} 1: 3$; ${ }^{\mathrm{c}} \mathrm{CD}{ }_{3} \mathrm{OD}$; ${ }^{\text {d }}$ Chloroform-d.

