

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Three bisabolane-type sesquiterpenes from edible mushroom *Pleurotus* eryngii

Takashi Kikuchi^{a,*}, Kazutaka Kitaura^a, Ayaka Katsumoto^a, Jie Zhang^b, Takeshi Yamada^a, Reiko Tanaka^a

- ^a Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
- ^b School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China

ARTICLE INFO

Keywords: Bisabolane-type Sesquiterpene Pleurotus eryngii Inhibitory activity on nitric oxide production

ABSTRACT

Three bisabolane-type sesquiterpenes (1–3) were isolated from the fruiting bodies of king trumpet mushrooms (*Pleurotus eryngii*), together with a known compound (4). All isolated compounds were evaluated for their inhibitory effects on nitric oxide (NO) production. Among these, 2 exhibited a moderate inhibitory effect on NO production with an IC_{50} of 90.9 μ M.

1. Introduction

The edible mushroom Pleurotus eryngii (Pleurotaceae) is native to the Mediterranean Basin, Central and Southern Europe, and Central and Western Asia [1]. It was found to contain the following bioactive compounds: eryngiolide A, exhibiting cytotoxicity to tumor cells [2], pleurone, showing an inhibitory effect on human neutrophil elastase [3], polysaccharides, having an inhibitory effect on lipid accumulation [4, 5] and showing antitumor activity [6], a polypeptide showing antioxidant, antitumor, and immunostimulatory activities [7], and a protein exhibiting cytotoxicity to tumor cells [8]. In our continuing search for bioactive compounds from P. eryngii, we recently reported the isolation of ergostane-type steroids, including eringiacetals A and B and pleurocins A and B, with evaluations of their inhibitory effects on nitric oxide (NO) production and human recombinant aromatase [9-11]. In this paper, we describe the isolation and structural elucidation of three new bisabolane-type sesquiterpenes, and the evaluation of their inhibitory effects on NO production.

2. Experimental

2.1. General experimental procedures

Chemicals and reagents were purchased as follows: fetal bovine serum (FBS) from *Invitrogen Co.* (Carlsbad, CA, USA); 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT) from Sigma-Aldrich Japan Co. (Tokyo, Japan); Dulbecco's modified Eagle's medium (DMEM), antibiotics, and lipopolysaccharide (LPS) from *Escherichia coli*

E-mail address: t.kikuchi@gly.oups.ac.jp (T. Kikuchi).

O157, from Nacalai Tesque, Inc. (Kyoto, Japan); sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan); and NG-monomethyl-L-arginine acetate (L-NMMA) from Dojindo Molecular Technologies, Inc. (Kumamoto, Japan). All other chemicals and reagents were of analytical grade. Physical data were obtained using following instruments: a JASCO DIP-1000 digital polarimeter for optical rotations; a Jasco FT/ IR-680 Plus for IR spectra; an Agilent-NMR-vnmrs600 for ¹H and ¹³C NMR spectra (1H: 600 MHz; 13C: 150 MHz) in CDCl₃ with tetramethylsilane as the internal standard; and a JEOL JMS-700 for FAB mass spectrometry. Column chromatography was carried out with silica gel (70-230 mesh, Merck, Darmstadt, Germany) and silica gel 60 (230-400 mesh, Nacalai Tesque, Inc., Kyoto, Japan). HPLC was performed using the following systems; system I: MeOH/H2O (45:55), system II: MeOH/H2O (55:45), system III: MeOH/H2O (60:40), and system IV: MeOH/H2O (80:20), with a Cosmosil 5C18-MS-II column (25 cm \times 20 mm i.d.) (Nacalai Tesque, Inc.) 4.0 mL/min, 35 °C.

2.2. Material

Fruiting bodies of *P. eryngii*, produced in Kagawa, Japan, were purchased from HOKUTO Corp. in 2014.

2.3. Extraction and isolation

The fruiting bodies of *P. eryngii* (dry weight 13 kg) were extracted with MeOH under reflux (3 days, 4 times). The MeOH extract (1920 g) was partitioned between AcOEt and H₂O. The AcOEt-soluble fraction

^{*} Corresponding author.

T. Kikuchi et al. Fitoterapia 129 (2018) 108–113

(385 g) was subjected to SiO_2 column chromatography (CC) [SiO_2 (3.5 kg); hexane/AcOEt (5:1, 1:1, and 0:1), and AcOEt/MeOH (10:1, and 0:1) in increasing order of polarity] resulting in fourteen fractions (Fr. A–N).

Fr. F (33 g), which was eluted with hexane/AcOEt (1:1), was fractionated into 16 fractions, F1 to F16, by SiO_2 CC; Fr. F5 (33 g) was then eluted with hexane:AcOEt 5:1, and rechromatographed by SiO_2 CC to yield 18 fractions, F5–1 to F5–18. Preparative HPLC (system II) of Fr. F5–6 (56.04 mg), eluted with hexane:AcOEt 1:1, gave 1 (3.65 mg; t_R 51.6 min). SiO_2 CC of Fr. F6 (5 g), eluted with hexane:AcOEt 5:1, gave 35 fractions, F6–1 to F6–35. Among these, F6–11 (183.03 mg), eluted with AcOEt, gave 2 (2.63 mg; t_R 39.9 min), 1 (1.81 mg; t_R 46.3 min), and 3 (14.00 mg; t_R 52.7 min) by HPLC (system III).

Fr. G (1 g), eluted with hexane:AcOEt 1:1, was subjected to SiO_2 CC to yield 14 fractions, G1 to G14. Preparative HPLC (system I) of G6 gave 4 (2.81 mg; t_R 90.8 min).

Fr. H (22 g), eluted with hexane:AcOEt 1:1, was subjected to $\rm SiO_2$ CC to yield 8 fractions, H1 to H8; H2 (17 g), eluted with hexane:AcOEt 1:1, was then rechromatographed by $\rm SiO_2$ CC to yield 38 fractions. Among these, H2–10 (49.92 mg) and H2–11 (51.80 mg), eluted with AcOEt, gave 1 (1.05 mg and 1.19 mg, respectively; $\rm t_R$ 16.7 min) by HPLC (system IV).

2.3.1. Compound 1

Amorphous solid; $[\alpha]_{\rm D}^{20}$ + 92.8 (c 0.34, EtOH); IR (KBr) $\nu_{\rm max}$ 3446, 2960, 1717, 1456, 1368, 1153, 1101, 1041, 1016 cm $^{-1}$; for 1 H and 13 C NMR spectra, see Table 1; FABMS m/z 309 [M + Na] $^{+}$; HRFABMS m/z 309.1676 (calcd for $C_{15}H_{26}O_{5}$ Na, 309.1678).

2.3.2. Compound 2

Amorphous solid; $[\alpha]_D^{20} + 39.7$ (c 0.046, EtOH); IR (KBr) $\nu_{\rm max}$ 3419, 2360, 2342, 1456, 2342, 1456, 1382, 1040 cm⁻¹; for ¹H and ¹³C NMR spectra, see Table 1; FABMS m/z 295 [M + Na] ⁺; HRFABMS m/z 295.1883 (calcd for $C_{15}H_{28}O_4Na$, 295.1885).

2.3.3. Compound 3

Amorphous solid; $[\alpha]_D^{20}+182.6$ (c 0.20, EtOH); IR (KBr) ν_{max} 3428, 2951, 2865, 1426, 1369, 1259, 1115, 1092 cm $^{-1}$; for 1 H and 13 C NMR spectra, see Table 1; FABMS m/z 293 [M + Na] $^+$; HRFABMS m/z 293.1730 (calcd for $C_{15}H_{26}O_4$ Na, 293.1729).

Table 1

NMR spectroscopic data (¹H: 600 MHz: ¹³C: 150 MHz) for compound 1–3 in CDCl₂.

		1				2				3		
position	δ_{H}		δ_{C}		δ_{H}		δ_{C}		δ_{H}		δ_{C}	
2			105.3	S	3.97	(1H, dd, 8.2, 5.0)	83.4	d	4.42	(1H, dd, 3.2, 2.3)	83.6	d
3	2.13^{a}		41.4	d	2.20	(1H, m)	37.2	d			147.6	S
3a	2.40 ^a		42.2	d	2.03	(1H, m)	44.2	d	2.89	(1H, br s)	42.6	d
4	$\alpha \ 2.12^a$		18.4	t	α 1.96	(1H, m)	19.9	t	α 2.10	(1H, m)	18.1	t
	β 1.56	(1H, m)			β 1.48 ^a				β 1.78	(1H, m)		
5	α 1.69	(1H, m)	32.4	t	α 1.65	(1H, m)	32.1	t	α 1.55	(1H, m)	31.7	t
	β 1.48	(1H, td, 14.0, 4.7)			β 1.45 ^a				β 1.46	(1H, m)		
6			72.0	S			72.0	S			72.4	s
7	3.38	(1H, d, 8.3)	77.7	d	3.35	(1H, d, 7.4)	75.4	d	3.16	(1H, d, 8.2)	75.0	d
7a	4.28	(1H, t, 8.3)	83.8	d	4.06	(1H, t, 7.4)	81.9	d	4.22	(1H, t-like, 8.2)	82.9	d
8			208.5	S	3.74	(1H, ddd, 10.0, 5.0, 2.4)	70.6	d	3.74	(1H, dt, 10.3, 3.2)	71.9	d
9	A 2.43	(1H, dd, 17.3, 7.1)	43.9	t	A 1.35	(1H, m)	42.5	t	A 1.20	(1H, ddd, 12.7, 10.3, 3.0)	40.1	t
	B 2.64	(1H, dd, 17.3, 6.5)			B 1.47 ^a				B 1.50	(1H, m)		
10	2.23	(1H, m)	24.3	d	1.83	(1H, m)	24.6	d	1.85	(1H, m)	24.5	d
11	0.96	(3H, d, 6.7)	22.6	q	0.92	(1H, d, 6.5)	21.5	q	0.90	(3H, d, 6.5)	21.6	q
12	0.94	(3H, d, 6.7)	22.5	q	0.96	(1H, d, 6.5)	24.0	q	0.95	(3H, d, 6.5)	23.8	q
13	0.88	(3H, d, 6.4)	11.0	q	1.09	(3H, d, 7.0)	13.4	q	A 4.99	(1H, brs)	105.4	t
									B 5.03	(1H, brs)		
14	1.32	(3H, s)	27.0	q	1.26	(3H, s)	26.7	q	1.24	(3H, s)	26.9	q
2-O <u>H</u>	4.20	(1H, s)		-				-				_

^a Overlapped with other signals.

2.4. Preparation of the (S)-and (R)-MTPA Esters from 1, 2, and 3

To a solution of 1 (3.18 mg) in pyridine was added (–)-MTPA-Cl (100 mg). The mixture was stirred at r.t. overnight, poured into $\rm H_2O$ and extracted with $\rm CH_2Cl_2$. The organic layer was evaporated *in vacuo* to give a crude product. This was subjected to HPLC, which yielded 1a (3.27 mg), the (*S*)-MTPA ester of 1. Compound 1b (2.83 mg), the (*R*)-MTPA ester of 1, was prepared from 1 (2.41 mg); the (*S*)-MTPA ester of 2 (2a, 2.33 mg), and (*R*)-MTPA ester of 2 (2b, 4.48 mg) were prepared from 2 (2.38 mg and 2.67 mg, respectively); the (*S*)-MTPA ester of 3 (3a, 6.00 mg) and (*R*)-MTPA ester of 3 (3b, 5.00 mg) were prepared from 3 (2.41 mg and 2.77 mg, respectively) by a similar method to that described above.

2.4.1. (S)-MTPA ester of compound 1 (1a)

¹H NMR (600 MHz, CDCl₃) δ 7.63 (2H, brd, J = 7.9 Hz, Ar), 7.39 (overlapped, Ar), 7.37 (overlapped, Ar), 5.11 (1H, d, J = 8.5 Hz, H-7), 4.55 (1H, t, J = 8.5 Hz, H-7a), 4.48 (1H, s, 2-OH), 3.61 (3H, s, OMe), 2.78 (1H, dd, J = 17.9, 7.3 Hz, H-9B), 2.53 (1H, m, H-3a), 2.40 (1H, dd, J = 17.9, 6.2 Hz, H-9A), 2.20 (1H, m, H-3), 2.18 (1H, m, H-10), 2.15 (1H, m, H-4α), 1.72 (1H, ddd, J = 14.0, 4.4, 2.0 Hz, H-5α), 1.64 (1H, m, H-4β), 1.58 (1H, m, H-5β),1.09 (3H, s, Me-14), 0.94 (3H, d, J = 6.8 Hz, H-11), 0.897 (3H, d, J = 6.5 Hz, Me-13), 0.840 (3H, d, J = 6.8 Hz, Me-12) ppm; HRFABMS m/z 525.2068 (calcd for C₂₅H₃₃F₃O₇Na, 525.2076).

2.4.2. (R)-MTPA ester of compound 1 (1b)

¹H NMR (600 MHz, CDCl₃) δ 7.59 (2H, brd, J = 6.7 Hz, Ar), 7.40 (overlapped, Ar), 7.38 (overlapped, Ar), 5.09 (1H, d, J = 8.5 Hz, H-7), 4.49 (1H, t, J = 8.5 Hz, H-7a), 4.45 (1H, s, 2-OH), 3.47 (3H, s, OMe), 2.80 (1H, dd, J = 18.2, 7.3 Hz, H-9B), 2.52 (1H, m, H-3a), 2.43 (1H, dd, J = 18.2, 6.4 Hz, H-9A), 2.20 (1H, dq, J = 16.7, 6.4 Hz, H-3), 2.18 (1H, m, H-10), 2.16 (1H, m, H-4α), 1.76 (1H, m, H-5α), 1.64 (1H, m, H-4β), 1.60 (1H, m, H-5β), 1.23 (3H, s, Me-14), 0.96 (3H, d, J = 6.7 Hz, Me-11), 0.891 (3H, d, J = 6.5 Hz, Me-13), 0.888 (3H, d, J = 6.7 Hz, Me-12) ppm; HRFABMS m/z 525.2075 (calcd for C₂₅H₃₃F₃O₇Na, 525.2076).

2.4.3. bis-(S)-MTPA ester of compound 2 (2a)

¹H NMR (600 MHz, CDCl₃) *δ* 7.65 (2H, m. Ar), 7.55 (2H, m, Ar), 7.41 (overlapped, Ar), 7.35 (overlapped, Ar), 7.34 (overlapped, Ar), 5.30 (1H, dt, J=9.4, 3.6 Hz, H-8), 4.90 (1H, d, J=8.5 Hz, H-7), 4.18 (1H, dd, J=8.8, 4.4 Hz, H-2), 3.92 (1H, t, J=7.9 Hz, H-7a), 3.550

Download English Version:

https://daneshyari.com/en/article/8530476

Download Persian Version:

https://daneshyari.com/article/8530476

Daneshyari.com