FISEVIER

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Streptoxamine, an unprecedented benzoisoindole-deferoxamine hybrid from the locust-derived *Streptomyces* sp. HKHCa2

Zhi Kai Guo^{a,*,1}, Rong Wang^{b,1}, Fu Xiao Chen^b, Tian Mi Liu^c

- ^a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
- ^b Hainan Academy of Ocean and Fisheries Sciences, Haikou 570203, People's Republic of China
- ^c Hainan Testing Center for the Quality and Safety of Aquatic Products, Haikou 570206, People's Republic of China

ARTICLE INFO

Keywords: Streptoxamine Streptomyces sp. HKHCa2 Locust Antibacterial activity

ABSTRACT

An unusual benzoisoindole-deferoxamine hybrid, streptoxamine (1), has been isolated from the ethyl acetate crude extract of the fermentation broth of a locust-associated actinomycete, *Streptomyces* sp. HKHCa2, which was isolated from an insect, *Oxya chinensis*. The structure of this secondary metabolite was elucidated on the basis of its one-dimension, two-dimension NMR, and mass spectroscopic data. This natural product features a hybrid pattern of a benzoisoindole with an "iron carrier" deferoxamine B through C-N linkage. Compound 1 showed weak antibacterial activity against the gram-positive bacteria, *Staphylococcus aureus* and *Mycobacterium smegmatis*.

1. Introduction

Insects, possessing the most rich groups, are often associated with symbiotic microorganisms which provide nutrition, immunological regulators, antibiotics, etc. to support their host survival and adaptation [1,2]. In the insect-symbiont associations, the host organisms often harbor specific microbial symbionts [3], providing a tremendous discovery opportunity for isolating new species of bacteria and fungi. Explorations of the microbes in symbiotic insect ecosystems can give new insights into the natural products discovery and have led to the discovery of plentiful of bioactive natural products with novel chemical scaffolds. For example, a series of immunosuppressive polyketides with different novel carbon skeletons were reported from the fungus Daldinia eschscholzii IFB-TL01 isolated from the gut of the mantis species Tenodera aridifolia [4,5]. Bacterial symbionts with insect are also a promising source of novel bioactive natural products and a great many bioactive metabolites from actinomycete are being reported such as the Na+/K+-ATPase inhibitor, coprisidin A, and NAD(P)H:quinone oxidoreductase inducer, coprisidin B from a dung beetle (Copris tripartitus)associated Streptomyces strain [6], and antimicrobial 20-membered glycosylated macrolactams, macrotermycins A-D from a termite-associated Amycolatopsis sp. M39 [7]. In addition, Deinococcus sp. from the carpenter ant Camponotus japonicus and Microbacterium sp. from the carrion beetle Nicrophorus concolor produced novel aminoglycolipids

deinococcucins A-D and chlorinated cyclic peptides nicrophorusamides A and B, respectively [8,9]. Our previous chemical investigation of insect-associated actinomycetes also led to the discovery of chemically intriguing bioactive molecules like novel enediyne-derived compounds amycolamycins A and B, and unusual macrolactams rifamorpholines A-E from the locust (Locusta migratoria)-associated rare actinobacterium Amycolatopsis sp. Hca4, and tetrasaccharide derivatives actinotetraoses A-H and angucyclines from Amycolatopsis sp. HCa1 derived from the locust, Oxya chinensis [10-14]. In our continuing efforts to search for insect-associated bacterial symbionts, recently we isolated an actinomycete strain Streptomyces sp. HKHCa2 from a healthy insect Oxya chinensis, collected from Haikou, People's Republic of China. Subsequent chemical study on the large-scale fermentation broth by a combination of column chromatography led to the isolation and identification of an unusual benzoisoindole-deferoxamine hybrid, streptoxamine (1) (Fig. 1). This compound features a hybrid pattern of a benzoisoindole with an "iron carrier" deferoxamine B through C-N linkage and showed weak antibacterial activity against the gram-positive bacteria, Staphylococcus aureus and Mycobacterium smegmatis. Herein, we report the isolation and structure elucidation of this novel compound, as well as its antibacterial activity.

^{*} Corresponding author.

E-mail address: guozhikai@itbb.org.cn (Z.K. Guo).

¹ These authors contributed equally to this work.

Z.K. Guo et al. Fitoterapia 127 (2018) 25-28

Fig. 1. Structure of streptoxamine (1).

2. Results and discussion

Streptoxamine (1) was isolated as a yellow oil with the molecular formula of C₃₉H₅₆N₆O₁₃ derived from the high-resolution electrospray ionization mass spectrum (HR-ESI-MS) and ¹³C NMR data (Table 1). The ¹³C NMR and DEPT135 spectra of 1 displayed signals of thirty nine carbons, including seven carbonyl carbons ($\delta_{\rm C}$ 186.1–170.6), two aromatic/olefinic methine carbons ($\delta_{\rm C}$ 126.1, 108.8), eight non-protonated aromatic/olefinic carbons ($\delta_{\rm C}$ 157.8–111.5), two methyl carbons ($\delta_{\rm C}$ 20.8, 11.3), one oxygenated methyl carbons ($\delta_{\rm C}$ 60.3), and nineteen aliphatic methylene carbons ($\delta_{\rm C}$ 47.5–23.4). The ¹H NMR spectrum of 1 in DMSO- d_6 exhibited signals of two methyls at δ_H 2.59 (3H, s, H-13) and 1.95 (3H, s, H-25'), one oxygenated methyls at $\delta_{\rm H}$ 3.79 (3H, s, 7-OMe), two aromatic protons [δ_H 7.63 (1H, s, H-1) and 7.08 (1H, s, H-5)], nineteen aliphatic methylenes ($\delta_{\rm H}$ 3.96–1.20), two hydroxyl groups at $\delta_{\rm H}$ 13.62 (1H, br s, 8-OH) and 9.63 (1H, br s, 6-OH), and two NH groups at $\delta_{\rm H}$ 7.76 (1H, t, J = 5.6, 10'-NH) and 7.74 (1H, t, J = 5.6, 19'-NH). These data above showed that 1 could contain three other N-hydroxyl moieties and three rings.

The complete assignments for all protons and carbons, as shown in

Table 1 1 H (700 MHz) and 13 C NMR (175 MHz) spectroscopic data for streptoxamine (1) in DMSO- d_6 .

Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ extsf{C}}$	Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$
1	7.63, s	126.1, CH	7′	2.25, m	30.3, CH ₂
2		120.8, C	8′	2.56, m	28.0, CH ₂
3		178.5, C	9′		171.7, C
4		131.7, C	10'	2.99, m	38.9, CH ₂
5	7.08, s	108.8, CH	10'-NH	7.76, t ($J = 5.6$)	
6		157.8, C	11'	1.37, m	29.3, CH ₂
6-OH	9.63, br s		12'	1.20, m	24.0, CH ₂
7		139.3, C	13'	1.49, m	26.5, CH ₂
7-OMe	3.79, s	60.3, CH ₃	14'	3.44, t ($J = 7.0$)	47.5, CH ₂
8		157.8, C	15'		172.4, C
8-OH	13.62, s		16'	2.25, m	30.3, CH ₂
9		111.5, C	17'	2.56, m	28.0, CH ₂
10		186.1, C	18'		171.7, C
11		117.2, C	19'	2.99, m	38.9, CH ₂
12		137.8, C	19'-NH	7.74, t ($J = 6.0$)	
13	2.59, s	11.3, CH_3	20'	1.37, m	29.3, CH ₂
1'	3.96, t ($J = 7.0$)	46.9, CH ₂	21'	1.20, m	24.0, CH ₂
2′	1.71, p ($J = 7.0$)	29.8, CH_2	22'	1.49, m	26.5, CH ₂
3′	1.23, m	23.4, CH ₂	23'	3.44, t ($J = 7.0$)	47.2, CH ₂
4′	1.54, p ($J = 7.0$)	26.2, CH_2	24'		170.6, C
5′	3.47, t ($J = 7.0$)	47.2, CH ₂	25'	1.95, s	20.8, CH ₃
6′		172.4, C			

Table 1, were deduced by comprehensive analysis of HSQC, ¹H-¹H COSY, HMBC, and ROESY spectra (Fig. 2). In 1, The naphthoquinone substructure could be identified by the observation of HMBC correlations from 8-OH to C-7 ($\delta_{\rm C}$ 139.3), C-8 ($\delta_{\rm C}$ 157.8) and C-9 ($\delta_{\rm C}$ 111.5), from 7-OMe to C-7, from H-5 to C-3 ($\delta_{\rm C}$ 178.5), C-4 ($\delta_{\rm C}$ 131.7), C-6 ($\delta_{\rm C}$ 157.8), C-7 and C-9, from H-1 to C-2 ($\delta_{\rm C}$ 120.8), C-3 and C-11 ($\delta_{\rm C}$ 117.2), from H_3 -13 to C-11 and C-12 (δ_C 137.8). The 1H , 1H three-bond couplings observed in the COSY spectrum from H₂-2' to H₂-1' and H₂-3', from H_2 -4' to H_2 -3' and H_2 -5', from H_2 -11' to H_2 -10' and H_2 -12', from H_2 -13' to H_2 -12' and H_2 -14', from 10'-NH to H_2 -10', from H_2 -20' to H_2 -19' and H₂-21', from H₂-22' to H₂-21' and H₂-23', from 19'-NH to H₂-19', together with the chemical shifts of the ¹³C resonances (C-1', C-5', C-10', C-14', C-19' and C-23') observed at relative higher field ($\delta_{\rm C}$ 47.5-38.9), revealed the presence of three mono-N-hydroxylated diaminopentane moieties [15]. ^{1}H - ^{1}H COSY correlations from H₂-7' (δ_{H} 2.25, m) to H_2 -8' (δ_H 2.56, m) and from H_2 -16' (δ_H 2.25, m) to H_2 -17' ($\delta_{\rm H}$ 2.56, m) and HMBC correlations from H₂-7' to C-9' ($\delta_{\rm C}$ 171.7), from H_2 -8' to C-6' (δ_C 172.4), from H_2 -17' to C-15' (δ_C 172.4) and from H_2 -16' to C-18' ($\delta_{\rm C}$ 171.7) identified two unsymmetrical succinyl residues in 1.

In the HMBC spectrum, correlations from H_2 -5' (δ_H 3.47, t, J = 7.0) to C-6', from 10'-NH to C-9' and C-10' ($\delta_{\rm C}$ 38.9), from H₂-10' ($\delta_{\rm H}$ 2.99, m) to C-9', from H₂-14' to C-15', from 19'-NH to C-18' and C-19' ($\delta_{\rm C}$ 38.9), and from H_2 -19' (δ_H 2.99, m) to C-18' suggested that each of the two succinyl residues was linked to two pentanediamine fragments via amide bonds. An acetyl group was connected with the 23'-N-hydoxyl on the basis of the HMBC correlations from H₂-23' ($\delta_{\rm H}$ 3.44, t, J=7.0) and H_3 -25' to C-15' (δ_C 170.6). These deductions above were also supported by the ROESY correlations from 10'-NH to H₂-8', H₂-10' and H₂-11', from 19'-NH to H2-17', H2-19' and H2-20'. The key HMBC correlations observed from H₂-1' ($\delta_{\rm H}$ 3.96, t, J=7.0) to C-1 and C-12 suggested that the nitrogen on the pentanediamine fragment was linked to C-1 and C-12 on the naphthoquinone substructure, thus forming the last ring and completing the structure of 1. This connectivity was also secured by the observation of the ROESY correlations from H-1 and H₃-13 to H₂-1' and H₂-2'. Therefore, the complete structure of streptoxamine (1) was determined as shown in Fig. 1. This unusual natural product features a hybrid pattern of a naphthoquinone with an "iron carrier" deferoxamine B through C-N linkage, which could be generated by non-enzymatic condensation of the terminal amino group in deferoxamine B with the isofurano moiety with the same strategy for pyridine ring biosynthesis [16,17].

Compound 1 was assessed for antibacterial activity against selected Gram-positive Staphylococcus aureus, Bacillus subtilis, and Mycobacterium smegmatis. As a result, it only displayed weak antibacterial activity

Download English Version:

https://daneshyari.com/en/article/8530546

Download Persian Version:

https://daneshyari.com/article/8530546

<u>Daneshyari.com</u>