Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Two new bis-iridoids isolated from *Scabiosa stellata* and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities

Meryem Lehbili^{a,b}, Abdulmagid Alabdul Magid^{b,*}, Jane Hubert^b, Ahmed Kabouche^a, Laurence Voutquenne-Nazabadioko^b, Jean-Hugues Renault^b, Jean-Marc Nuzillard^b, Hamid Morjani^c, Amin Abedini^{b,d}, Sophie C. Gangloff^d, Zahia Kabouche^a

^a Université des frères Mentouri-Constantine, Département de chimie, Laboratoire d'Obtention des Substances Thérapeutiques (LOST), Campus Chaabet-Ersas, 25000 Constantine, Algeria

^b ICMR-UMR CNRS 7312, Groupe Isolement et Structure, Campus Sciences, Bât. 18, BP 1039, 51687 Reims, France

^c MEDyC UMR CNRS 7369, URCA, Faculté de Pharmacie, SFR CAP Santé, 1, Rue du Maréchal-Juin, 51096 Reims, France

^d EA 4691, Biomatériaux et inflammation en site osseux, Laboratoire de microbiologie, UFR de pharmacie, 1, Rue du Maréchal-Juin, 51096 Reims, France

ARTICLE INFO

Keywords: Scabiosa stellata Caprifoliaceae Bis-iridoid glucoside Antibacterial activity Cytotoxic activity Dereplication

ABSTRACT

This study presents the chemical profile investigation of a 70% ethanol extract obtained from *Scabiosa stellata*, a medicinal herbaceous traditionally used to treat heel cracks. A ¹³C NMR-based dereplication methodology was firstly applied on centrifugal partition chromatography-generated fractions in order to quickly identify the major compounds of the extract. The dereplication process was then completed by semi-preparative high-performance liquid chromatography in order to identify unknown or minor compounds. Two new bis-iridoids, namely 7-0-caffeoyl-sylvestroside I (1) and 7-0-(*p*-coumaroyl)-sylvestroside I (2), together with ten known compounds (3 - 12) were isolated. Their structures were elucidated by spectroscopic methods including NMR and HR-ESI-MS. The antibacterial, anti-tyrosinase and DPPH radical scavenging activities of the crude extract, fractions, and isolated compounds, particularly 1 and 2 which yielded MIC values of $31.2 \,\mu$ g/mL against *Staphylococcus faecalis* and $62.5 \,\mu$ g/mL against *Staphylococcus epidernidis*. The cytotoxic activity of these new bis-iridoids was evaluated on a fibrosarcoma cell line (HT1080) and only compound 1 exhibited a moderate cytotoxic activity (IC₅₀ 35.9 μ g/mL).

1. Introduction

The genus *Scabiosa* belongs to the Caprifoliaceae family and comprises about 100 species. The majority of *Scabiosa* species occurs in the Mediterranean region [1] and among them 12 species grows in Algeria [2]. In Catalonia (Spain), the decoction of the aerial part of *S. columbaria* is traditionally used against diphtheria [3]. In Algeria, *S. arvensis* is used in folk medicine against diarrhea, inflammation, microbial infections and skin disorders [4]. In moroccan folk medicine, the leaves and flowers of *S. stellata* are used against heel cracks [5]. Many extracts obtained from *Scabiosa* species have already demonstrated antibacterial activities, such as *S. atropurpurea* [6], *S. hymettia* [7], *S. columbaria* [8], or *S. arenaria* [9]. The extracts of *S. arenaria* and *S. tschiliensis* have shown antioxidant properties [10,11].

Up to date, chemical investigations of *Scabiosa* species have mainly revealed the presence of saponins [12,13], flavonoids, and coumarins [14]. Previous studies have also reported that the genus *Scabiosa*

characteristically contains bis- and mono-iridoid glucosides [15,16].

Scabiosa stellata Cav., known with the common name starflower pincushions, is an herbaceous, bristly-hairy annual plant (20–60 cm). The lower leaves are 7–12 cm long, spoon-shaped in outline, tapered at the base, the margins with blunt teeth irregular in size and placement. The outer florets are light gray-blue, irregularly shaped. The central florets are smaller and subtended each by a rounded translucent bract with a green midrib [4]. In this work, we have investigated the chemical profile of *S. stellata* and the antibacterial, tyrosinase inhibitory, DPPH radical scavenging and cytotoxic activities of the crude extract, fractions and isolated compounds.

2. Results and discussion

The antibacterial activity of the 70% EtOH extract obtained from the whole plant *S. stellata* was evaluated against 22 μ -organisms including 17 Gram-positive and Gram-negative bacteria and 5 yeasts. The

* Corresponding author. E-mail address: abdulmagid.alabdulmagid@univ-reims.fr (A. Alabdul Magid).

https://doi.org/10.1016/j.fitote.2017.12.018

Received 8 November 2017; Received in revised form 18 December 2017; Accepted 18 December 2017 Available online 19 December 2017 0367-326X/ © 2017 Published by Elsevier B.V.

Table 1

Antimicrobial activity of 70% ethanol extract of S. stellata and fractions A-E (solid medium).

Micro-organisms	70% EtOH extract MIC (mg/mL)	Fractions MIC (mg/mL)					Positive controls MIC (μg/mL)		
		A	В	С	D	Е	G	v	Am
Gram positive bacteria									
Bacillus subtilis	5	> 10	2.5	2.5	10	> 10	0.12	2	NT
Enterococcus faecalis ATCC 1034	> 10	> 10	1.2	2.5	10	> 10	16	> 64	NT
Staphylococcus aureus 8325-4	> 10	> 10	0.6	1.2	10	> 10	0.5	4	NT
Staphylococcus aureus CIP 53.154	> 10	> 10	0.6	1.2	10	> 10	4	> 64	NT
Staphylococcus epidermidis	2.5	10	1.2	1.2	5	5	0.25	4	NT
Micrococcus luteus	2.5	10	1.2	2.5	5	5	0.5	4	NT
Listeria innocua	> 10	> 10	> 10	10	> 10	> 10	0.5	≤ 4	NT
Streptococcus pyogenes	1.2	10	1.2	2.5	5	5	2	1	NT
Gram negative bacteria									
Escherichia coli CIP 54.127	> 10	> 10	> 10	10	> 10	> 10	≤ 4	> 16	NT
Enterobacter cloacae	> 10	> 10	> 10	10	> 10	> 10	≤ 4	> 16	NT
Salmonella enterica	> 10	> 10	> 10	10	> 10	> 10	≤ 4	> 16	NT
Serratia marcescens	> 10	> 10	> 10	10	> 10	> 10	0.5	> 64	NT
Proteus vulgaris	> 10	> 10	> 10	10	> 10	> 10	≤ 4	> 16	NT
Klebsiella pneumoniae	> 10	> 10	> 10	10	> 10	> 10	> 64	> 64	NT
Providencia stuartii	> 10	> 10	> 10	10	> 10	> 10	2	> 64	NT
Pseudomonas aeruginosa ATCC 9027	> 10	> 10	> 10	10	> 10	> 10	8	> 64	NT
Shigella sonnei	> 10	> 10	> 10	10	> 10	> 10	0.5	8	NT
Yeast									
Candida albicans	5	10	0.6	1.5	5	10	> 64	> 64	0.5
Candida glabrata	2.5	10	2.5	2.5	10	10	> 64	> 64	0.25
Candida tropicalis	5	> 10	1.5	1.5	5	10	> 64	> 64	0.25
Candida kefyr	2.5	5	1.2	1.2	5	5	> 64	> 64	0.25
Cryptococcus neoformans	2.5	5	1.2	1.2	5	5	> 64	> 64	0.5

MIC: minimum inhibitory concentration, NT: not tested. Positive controls: G: Gentamicin, V: Vancomycin and Am: Amphotericin B.

Table 2

DPPH radical scavenging and mushroom tyrosinase inhibition of 70% MeOH extract, fractions A-E and compounds isolated from *S. stellata*.

	DPPH radical scavenging activity IC ₅₀ (µg/mL)	Mushroom tyrosinase inhibition IC ₅₀ (μg/mL)
70% MeOH extract Fraction A Fraction B Fraction C Fraction D Fraction E 6 7 8 10 Ascorbic acid ^b	$\begin{array}{r} 86.0 \pm 1.8 \\ 133 \pm 2.6 \\ 48.7 \pm 1.1 \\ 25.0 \pm 0.8 \\ 64.3 \pm 1.5 \\ > 200 \\ 7.1 \pm 0.4 \\ 7.2 \pm 0.4 \\ 8.5 \pm 0.5 \\ 16.0 \pm 0.6 \\ 6.3 \pm 0.1 \end{array}$	$(40\%)^a$ $(45\%)^a$ $(15\%)^a$ 1330 ± 23 1000 ± 19 1330 ± 22 > 665 > 665 > 665 > 665 > 665
Kojic acid ^b	0.0 _ 0.1	6.8 ± 0.1

 $^{\rm a}$ % Inhibition at 1330 $\mu g/mL$

^b The positive control.

MIC determination method in solid media was used [17]. The results are presented in Table 1. The highest antimicrobial activity was observed against *Streptococcus pyogenes* (MIC 1.2 mg/mL), whereas a moderate to low antimicrobial activity was observed against *Staphylococcus epidermidis* or *Micrococcus luteus* (MIC 2.5 mg/mL) and *Bacillus subtilis* (MIC 10 mg/mL), Regarding antifungal activity, the crude extract showed a moderate activity (MIC 2.5 to 5 mg/mL). A moderate DPPH radical scavenging activity was also observed for this extract (IC₅₀ 86.0 µg/mL), as well as a moderate tyrosinase inhibitory activity when tested on an *in vitro* mushroom tyrosinase assay (40% inhibition at 1.33 mg/mL) (Table 2).

In order to isolate potentially active compounds, a bioassay-guided fractionation strategy was applied throughout the separation procedure. The 70% ethanol extract of the whole plant *S. stellata* was subjected to a Diaion HP-20 column, eluting with 0%, 25%, 50%, 75% and 100% MeOH, yielding five fractions (A-E, respectively). These fractions were evaluated for their antimicrobial, antioxidant and anti-tyrosinase activities (Tables 1 and 2). Fraction C exhibited the best antimicrobial activity against the 22 microorganisms (MIC 1.2 to 10 mg/mL). Whereas fraction B was active only against the gram-positive bacteria (except against Listeria innocua) and yeasts (MIC 0.6 to 2.5 mg/mL) (Table 1). Fractions B and C showed also the best DPPH radical scavenging activity (IC₅₀ 48.7 and 25 μ g/mL, respectively) (Table 2). Fraction C showed also a significant anti-tyrosinase activity (IC50 1.33 mg/mL) and was slightly less active than fraction D (IC₅₀ 1 mg/mL) (Table 2). Therefore, the chemical profiles of fractions B and C were investigated in order to determine which compounds were responsible for these activities (Fig. 1). Fractions B (2 g) and C (3 g) were subjected separately to CPC fractionation. The biphasic solvent system MtBE/CH₃CN/water (3/3/4, v/v/v) was selected to recover moderately polar compounds. After pooling the collected fractions on the basis of TLC profile similarities, adjacent sub-fractions B1-B23 and C1-C21 containing simplified mixtures or even pure compounds were obtained. Fractions B1-B23 and C1-C21 were all analyzed by ¹³C NMR for dereplication [18]. Automatic peak picking and binning of ¹³C signals across spectra resulted in two tables (one table for each CPC separation of B and C) which were independently submitted to Hierarchical Clustering Analysis (HCA) for pattern recognition. In this way, statistical correlations between ¹³C NMR signals belonging to individual structures within the fraction series were visualized as "chemical shift clusters" on the resulting two-dimensional HCA correlation heat maps in front of the corresponding dendrograms. As illustrated in Fig. 2, several well-defined clusters were intensely colored in yellow. After entering the chemical shift values of cluster 1 located in sub-fractions B₄₋₈ and C₇₋₁₄ into the database, the molecular structure of isoorientin (8) [19] was proposed. By means of the same database search strategy, cluster 2 present in sub-fractions B_{2-4} and C_{3-6} was identified as hyperin (10) [20], cluster 3 present in sub-fractions $B_{\rm 20-23}$ and $C_{\rm 11-14}$ was identified as eustomoruside (6) [21], cluster 4 present in sub-fractions C_{8-9} corresponded to a bis-iridoid structure containing loganic acid and caffeic

Download English Version:

https://daneshyari.com/en/article/8530709

Download Persian Version:

https://daneshyari.com/article/8530709

Daneshyari.com