FISEVIER

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

A new phenylspirodrimane dimer from the fungus Stachybotrys chartarum

- ^a Key Laboratory for Microbial Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
- b Engineering and Technology Research Center of Liupanshan Resources, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, Ningxia 756000, PR China
- ^c BioBioPha Co., Ltd., Kunming 650201, PR China

ARTICLE INFO

Keywords: Stachybotrys chartarum Secondary metabolites Phenylspirodrimane dimer Cytotoxicity

ABSTRACT

A new phenylspirodrimane dimer, named stachartarin A (1), was isolated from cultures of the tin mine tailings-associated fungus *Stachybotrys chartarum*. Its structures were elucidated by means of spectroscopic methods. At the same time, the compound was tested for its cytotoxicity against HL-60, SMMC-7721, A-549, MCF-7, and SW480 cells

1. Introduction

The fungus *Stachybotrys chartarum* is a black mold, which is sometimes found in damp soil and grain [1]. This fungus has a long history of causing problems for animals [2]. It produces a new class of phenylspirodrimanes, a group of fungal secondray metabolites with a wide range of biological activities, such as antihyperlipidemic effects [3], and anti-HIV activity [4]. Our previous investigations of this fungus have reported a series of phenylspirodrimanes [5]. In a continuing phytochemical study of this fungus, a new phenylspirodrimane dimer, stachartarin A(1) was isolated from its scale-up cultures. The isolation, structural elucidation, and its cytotoxicity of the new compound are described herein.

2. Experimental

2.1. General experimental procedures

UV data were obtained on a Shimadzu UV-2401A spectrophotometer. Infrared spectroscopy (IR) spectra were obtained on a Bruker Tensor27 FT-IR spectrometer with KBr pellets. Nuclear Magnetic Resonance (NMR) spectra were obtained on Bruker AV-400 MHz spectrometer with tetramethylsilane (TMS) as an internal standard at room temperature. Mass spectra were recorded on a VG Autospec-3000 mass spectrometer and an API QSTAR Pulsar I spectrometer. Silica gel (200–300 mesh, Qingdao Marine Chemical Ltd., China) and MPLC was performed on a BUCHI Sepacore system (BUCHI Labortechnik AG, Switzerland), and columns packed with RP-18 (40–75 μ m, Fuji Silysia Chemical Ltd., Japan). An Agilent 1100 series instrument equipped with Agilent ZORBAX SB-C18 column (5 μ m, 4.6 mm \times 150 mm) was used for HPLC analysis, and a semi-preparative Agilent ZORBAX SB-C18 column (5 μ m, 9.4 mm \times 150 mm) was used for the sample preparation. Fractions were monitored by TLC (GF 254, Qingdao Haiyang Chemical Co. Ltd), and spots were visualized by 10% H₂SO₄ in ethanol.

2.2. Fungal material and cultivation conditions

Stachybotrys chartarum was isolated from a soil sample collected from the Datun tin mine tailings area, Yunnan, P.R. China. A voucher specimen (No. YIM DT 10079) was deposited at Yunnan Institute of Microbiology, Yunnan University. The culture medium consisted of glucose (1.0%), peptone from porcine meat (0.5%), yeast powder

^{*} Corresponding authors at: Xueyuan Road, Guyuan 756000, Ningxia, PR China.

E-mail addresses: 82008016@nxnu.edu.cn (J.-H. Ding), f.wang@mail.biobiopha.com (F. Wang), mlwen@ynu.edu.cn (M.-L. Wen).

 $^{^{\}mathrm{1}}$ These authors contributed equally to this work and should be considered co-first authors.

Z.-G. Ding et al. Fitoterapia 125 (2018) 94-97

Table 1 1 H and 13 C NMR (400 and 100 MHz, respectively) data for compound 1 in CD₃SOCD₃.

No.	$\delta_{ m H}$	$\delta_{ m C}$	No.	$\delta_{ m H}$	$\delta_{ m C}$
1a	1.88 (m)	24.0 t	1″a	1.29 (m)	23.6 t
1b	0.95 (m)		1″b	0.88 (m)	
2a	1.82 (m)	25.0 t	2"a	1.82 (m)	24.7 t
2b	1.40 (m)		2″b	1.40 (m)	
3	3.16 (m)	73.7 d	3"	3.06 (dt, 11.8, 2.8)	74.8 d
4		37 0.4 s	4"		37.4 s
5	2.05 (dd, 11.8, 2.8)	39.3 d	5"	1.07 (m)	39.2 d
6a	1.44 (m)	20.5 d	6''a	1.05 (m)	20.3 t
6b	1.38 (m)		6″b	0.89 (m)	
7a	1.47 (m)	30.7 t	7"a	1.02 (m)	30.5 t
7b	1.37 (m)		7″b	0.40 (m)	
8	1.73 (m)	36.7 d	8"	1.50 (m)	35.8 d
9		97.4 s	9″		96.5 s
10		41.7 s	10"		41.5 s
11a	3.10 (d,17.3)	32.0 t	11″a	2.92 (d, 16.3)	31.4 t
11b	2.73 (d,17.3)		11″b	2.60 (d, 16.3)	
12	0.60 (d, 6.5)	15.3 q	12"	0.48 (d, 6.4)	15.5 q
13	0.85 (s)	28.5 q	13"	0.75 (s)	28.5 q
14	0.78 (s)	22.5 q	14"	0.69 (s)	22.7 q
15	0.93 (s)	15.9 q	15"	0.77 (s)	15.4 q
1'		120.7 s	1‴		110.4 s
2'		154.3 s	2‴		151.9 s
3′	6.66 (s)	100.5 d	3‴	6.33 (s)	106.5 d
4'		137.7 s	4‴		141.2 s
5′		126.0 s	5‴		108.7 s
6′		158.5 s	6‴		159.0 s
7′		204.6 s	7‴a	4.49 (dd, 13.0, 6.3)	61.3 t
			7‴b	4.42 (dd, 13.0, 6.3)	
8′	4.89 (dd, 6.8, 3.2)	73.7 d	8‴	3.71 (d, 3.2)	57.1 d
2'-OH	9.75 (s)		2‴-OH	9.21 (s)	
3'-OH	3.85 (d, 4.6)		3″-OH	3.42 (d, 11.8)	
8'-OH	5.44 (d, 6.8)		7‴-OH	5.03 (dd, 6.3, 4.9)	

(0.5%), KH_2PO4 (0.1%) and MgSO4·7 H_2O (0.02%). Fermentation was carried out on a shaker at 200 RPM for 15 days.

2.3. Extraction and isolation

The culture broth (150 L) of Stachybotrys chartarum was filtered, and

the filtrate was extracted three times with EtOAc, while the mycelium was extracted three times with $CHCl_3/MeOH$ (1:1). The EtOAc layer together with the mycelium extraction was concentrated under reduced pressure to give a crude extract. The extract was subjected to column chromatography over silica gel (200–300 mesh) eluted with a gradient of $CHCl_3/MeOH$ (1:0 \rightarrow 0:1) to obtain 2 fractions (1–2). Fraction 2 was applied to MPLC (MeOH/H₂O, eluting from 1:9 to 1:1) to give subfractions (A-B). Subfraction B was separated by silica gel column chromatography ($CHCl_3/MeOH$, 15:1 \rightarrow 14:1), to 1 (232 mg).

Stachartarin A (1): a white powder; $[\alpha]_D^{21.6}$ -37.5 (c 0.001, CHCl₃/MeOH, 1:1); UV (MeOH) λ_{max} : 230, 280 nm; IR (KBr) ν_{max} : 3441, 3265, 2938, 2877, 1705, 1621, 1458, 1386, 1346, 1071 cm⁻¹; ¹H and ¹³C NMR data (see Table 1); Positive ion HRESIMS: m/z 781.4282 ([M + Na] +, C₁₁H₁₈O₃N₂Na; calcd 781.4292).

3. Results and discussion

Compound 1 possessed a molecular formula of $C_{46}H_{62}O_9$, as evienced by HRESIMS (observed at m/z 781.4282, calcd at m/z 781.4292, [M + Na] $^+$) and appropriate for 16 degrees of unsaturation. The 1H and ^{13}C NMR spectra of compound 1 displayed 46 carbon signals due to 16 quaternary carbons including six oxygenated ones, one carbonyl carbon, ten methines including three oxygen-occurring ones, eleven methylenes including oxygenated one, and eight methyls (Table 1).

Detailed of its NMR spectra suggested two phenylspirodrimane fragments (1a and 1b), which were also supported by the $^1\text{H}-^1\text{H}$ COSY and HMBC spectra (Fig. 1). Compared to the known phenylspirodrimane, stachartin B [5], differences between **1a** and *stachartin* B were the absence of a lactone functional group (δ_{C} 68.9, CH₂, C-7' and δ_{C} 168.0, C, C-8') in stachartin B and the presence of a ketone carbonyl (δ_{C} 204.6, C, C-7') and an a oxygenated methane (δ_{C} 73.7, CH, C-8') in (Table 1) in **1a**. This was further confirmed by HMBC correlations from H-3' to C-7', and from H-8' to C-5' and C-7'; In **1b**, the presence of hydromethyl (δ_{C} 61.3, CH₂, C-7''') and a methane (δ_{C} 571, CH, C-8''') was further confirmed by the HMBC correlations (Fig. . 1) from H-3''' to C-7'''', from H-7''' to C-3''', C-4''' and C-5''', H-8''' to C-4''', C-5''' and C-6'''. Finally, the presence of key HMBC correlations from H-8''' to C-7' and C-8', and of $^1\text{H}-^1\text{H}$ COSY correlation of H-8'''/H-8' indicated that the

Download English Version:

https://daneshyari.com/en/article/8530727

Download Persian Version:

https://daneshyari.com/article/8530727

<u>Daneshyari.com</u>