

Contents lists available at ScienceDirect

Life Sciences

journal homepage: www.elsevier.com/locate/lifescie

Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition

Ruizan Shi^{a,*}, Diying Zhu^a, Zehui Wei^b, Naijie Fu^a, Chang Wang^a, Linhong Liu^a, Huifeng Zhang^a, Yueqin Liang^c, Jianfeng Xing^c, Xuening Wang^d, Yan Wang^a

- ^a Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
- ^b Department of Pharmacology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
- ^c Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
- ^d Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China

ARTICLE INFO

Keywords: Baicalein MCT-induced PAH Fibrosis EndoMT BMPR2 NF-κB

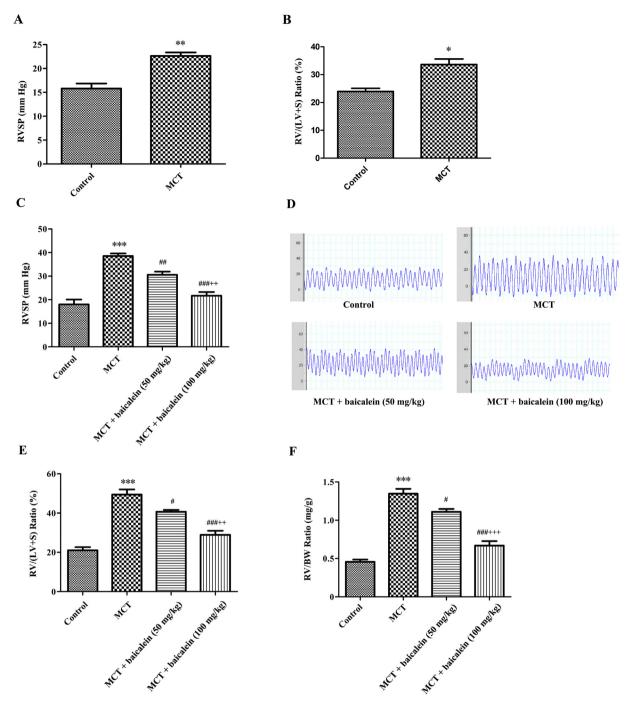
ABSTRACT

Aims: Endothelial-to-mesenchymal transition (EndoMT) was shown to lead to endothelial cell (EC) dysfunction in pulmonary arterial hypertension (PAH). Baicalein was reported to inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT. Whether it can attenuate PAH by inhibiting EndoMT remains obscure.

Main methods: PAH was induced by a single subcutaneous injection of MCT (60 mg/kg) in male Sprague Dawley rats. Two weeks after MCT administration, the rats in the treatment groups received baicalein orally (50 or 100 mg/kg/day) for an additional 2 weeks. Hemodynamic changes and right ventricular hypertrophy (RVH) were evaluated on day 28. Cardiopulmonary interstitial fibrosis was detected using Masson's trichrome, Picrosirius-red, and immunohistochemical staining. The reactivity of pulmonary arteries (PAs) was examined *ex vivo*. The protein expresson of EndoMT molecules, bone morphogenetic protein receptor 2 (BMPR2), and nuclear factor-κB (NF-κB) was examined to explore the mechanism of protective action of baicalein.

Key findings: Baicalein (50 and 100 mg/kg) significantly alleviated MCT-induced PAH and cardiopulmonary interstitial fibrosis. Furthermore, baicalein treatment enhanced PA responsiveness to acetylcholine (ACh) in PAH rats. The upregulation of EndoMT molecules (N-cadherin, vimentin, Snail, and Slug) strongly suggest that EndoMT participates in MCT-induced PAH, which was reversed by baicalein (50 and 100 mg/kg) treatment. Moreover, baicalein partially reversed MCT-induced reductions in BMPR2 and NF-κB activation in the PAs. Significance: Baicalein attenuated MCT-induced PAH in rats by inhibiting EndoMT partially via the NF-κB-BMPR2 pathway. Thus, baicalein might be considered as a promising treatment option for PAH.

1. Introduction


Pulmonary arterial hypertension (PAH) is a lethal disorder characterized by extensive obstruction of small and midsized pulmonary arteries (PAs) and a sustained increase in pulmonary arterial pressure (PAP), which ultimately results in right ventricular hypertrophy (RVH) and failure [1, 2]. The pathogenesis of PAH is multifactorial, and a significant number of reports have highlighted the contribution of endothelial cell (EC) dysfunction in the development of PAH [3–5]. Injury to the endothelium may result in an imbalance of endothelial vasoactive mediators, vasoconstriction, disordered EC proliferation, and loss of small PAs [6]. Aberrant EC proliferation leads to the formation of characteristic plexiform lesions in PAH [3, 7]. Therefore, improving endothelial function may be the most effective treatment for PAH.

Endothelial-to-mesenchymal transition (EndoMT) has been reported to cause endothelial dysfunction in human PAH and experimental models of PAH [8]. During EndoMT, ECs acquire markers of mesenchymal cells and express α -smooth muscle actin (α -SMA), while concurrently losing their endothelial marker proteins [9]. EndoMT-derived cells gain a migratory and invasive capacity and promote the formation and progression of occlusive intimal lesions in PAH patients and animal models of the disease [8, 10, 11]. EndoMT plays a vital role not only in the pathobiology of PAH, but also in the pathogenesis of fibrotic lung disease [8, 11–13]. Indeed, fibrosis is one of the pathological features of PAH [14]. Thus, inhibiting EndoMT and improving endothelial function might be a novel and efficacious therapeutic strategy for PAH.

Baicalein, a natural flavonoid extracted from Scutellaria baicalensis,

^{*} Corresponding author: Department of Pharmacology, Shanxi Medical University, No. 56 Xinjiannan Road, Yingze District, Taiyuan 030001, Shanxi Province, China. E-mail address: shiruizan@163.com (R. Shi).

R. Shi et al. Life Sciences 207 (2018) 442–450

Fig. 1. Baicalein alleviated increased RVSP and RVH induced by MCT in rats. RVSP (A) and the ratio of RV/(LV + S) (B) were determined 2 weeks after MCT or normal saline injection. C Baicalein treatment (50 and 100 mg/kg) for 2 weeks reduced the MCT-induced increase of RVSP. D Representative pictures of RVSP waves in each group. The effects of baicalein (50 and 100 mg/kg) on RVH were assessed by the ratio of RV/(LV + S) (E) and RV/BW (F). n = 6 per group. Data are expressed as means \pm S.E.M. * ^{4}P < 0.05, * ^{4}P < 0.01, and * ^{4}P < 0.001 versus Control group, * ^{4}P < 0.05, * ^{4}P < 0.01 and * ^{4}P < 0.001 versus 50 mg/kg/day baicalein-treated group.

possesses many pharmacological activities, such as antibacterial, antiviral, anti-inflammatory, anticancer, hypolipidemic, antiatherogenic, antithrombotic, and immunoregulatory effects [15–19]. Our previous study revealed that baicalein remarkably attenuated rat PAH induced by monocrotaline (MCT) [20]. However, its exact mechanism remains elusive. Baicalein has been demonstrated to exert a direct vasculoprotective effect by ameliorating vascular injury in diabetic animal models [21]. Baicalein effectively prevented endothelial dysfunction in spontaneously hypertensive rats [22]. A recent study demonstrated that baicalein attenuated vinorelbine-induced vascular EC injury in a rabbit

model of phlebitis [23]. Furthermore, several reports have shown that baicalein could inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT [24, 25]. Based on these findings, we hypothesized that baicalein would inhibit EndoMT and improve endothelial function to exert beneficial effects in MCT-induced rat PAH.

Download English Version:

https://daneshyari.com/en/article/8534798

Download Persian Version:

https://daneshyari.com/article/8534798

<u>Daneshyari.com</u>