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Abstract 

The in-plane vibration analysis of frames connected at an arbitrary angle is performed using wave propagation method as 
proposed in [1]. The earlier work done by Mei in [1] and [2] were limited to frames having orthogonally connected members. In 
the present work, the procedure is extended for interconnecting members at an arbitrary angle. The wave propagation based 
method used in this work is computationally efficient compared to finite element method. Thus, optimal angular orientation of 
the intermediate member is found for minimal vibration transmission from the source to the target structure. 
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1. Introduction 

Planar frames comprise a wide variety of engineering structures. Many applications of frames have 
interconnecting members at an arbitrary angle. Though, numerical solution for such structures is routine, finding the 
exact solution for the vibration analysis of such frames is a challenging task. 

 
Mei [1, 2] formulated the vibration analysis of such planar frames which considers the coupling effect of both 

transverse and longitudinal vibration with members connected at right angles. This approach uses wave propagation 
method for solving the equilibrium and continuity equation at the joint. In the present work, this approach is 
extended to frames which are connected at an angle. It is found that the wave approach is far more computationally 
efficient than Finite element Analysis as implemented in commercial software such as ANSYS. Owing to the 
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efficacy of the wave-based approach, it can be used in structural optimization. In the present work, this is 
demonstrated for arriving at an optimal angular orientation between a one dimensional source and target structure. 
The objective in the optimization exercise is to minimize the vibration at the target structure for a point harmonic 
forcing applied at the source structure. 

2. Wave Propagation Method  

2.1. Governing Equations 

Euler Bernoulli theory is used to model transverse vibrations and classical linear rod theory is used to model 
longitudinal vibration. The equations of motion for bending and longitudinal vibrations are 
 

                                    (1) 

 

                                    (2) 

Where x is the position along the axis, t is time, y(x,t) and u(x,t) are transverse and longitudinal deflections, 
respectively, q(x,t) and p(x,t) are externally applied transverse and longitudinal forces, respectively, E and ρ are 
Young’s modulus and density, respectively, I is the moment of inertia of the cross section, A is the cross-sectional 
area. 

Suppressing harmonic time dependence (ei t), solution to equation (1) can be written as 

     (3) 

Where                                                                     
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Solution to equation (2) can be written as 
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Where           

 (6) 
 
 

2.2. Propagation  Matrix 

Consider a wave moving from point A to B. If there is no discontinuity and there is a uniform structural element 
between these two points, the waves at these points are related by a propagation matrix as given in [1]. Waves at A 
and B are related as   ,  where  
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