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Abstract

A methodology is described to evaluate the Root-Mean-Square (RMS) errors in acceleration response during the vibration testing

of flexible structures like missile and rockets. Simulation studies are carried out on a free-free uniform beam to characterize the

error estimations in the desired and achieved acceleration spectra at different locations of the structure. Equal and unequal desired

spectra are also considered at different locations of the structure and individual error in the achieved spectrum, as well as overall

error is computed. The simulation results are obtained for traversing a single input along the length of the structure with three

control sensors at different locations. The variation of the force requirement at different locations of the control sensor and the

normalized RMS error for each control sensor is computed. The investigations show that the force requirement is less when the

control sensors are placed at the far ends of the structure. It is also observed that the force requirement is increased marginally for

the increased number of control sensors, whereas the overall error between the desired and achieved spectrum is reduced with the

increase in the number of control sensors.
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1. Introduction

Extreme dynamic conditions, which are random in nature, originating from the aerodynamic loads and thrust fluc-

tuations are the most critical parameters in the design phase of aerospace equipment, payloads, secondary structures

and interfaces. The performance of the sub-systems depends on their operation under these extreme conditions. In

the initial development phase of an aerospace structure, the random vibration levels experienced by the critical equip-

ment are measured using an accelerometer for a certain number of flight configurations. Based on the measured

acceleration levels, the acceleration spectrum is enveloped for all the flight configurations at the critical locations of

the equipment. Each sub-system is subjected to vibration testing so that the functioning of the sub-systems can be

evaluated for the simulated extreme vibration levels. In vibration testing [1-4], an airframe section assembled with

electronic sub-systems is fixed to a shake table. A control accelerometer is placed on the shake table and a desired

input acceleration spectrum for a specified duration is fed to the controller. The force to the airframe section is con-
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trolled in such a way that the desired acceleration spectrum is achieved at the base of the airframe section. Moreover,

the input forces excite the structural frequencies of the test section and it becomes difficult to control the vibrations

to the desired levels on a flexible structure. Hence, at present electronic systems are tested for their performance by

mounting them on very rigid fixtures. The same procedure is adopted for all the sub-systems. The input acceleration

spectrum and the duration of the vibration test differ from component to component. This demands for more vibration

testing time for all the sub-systems and in turn delays the mission. Hence, the disadvantages of vibration qualification

testing at section level are more time consumption, over testing and reduced life. In addition to this, the contribution

of the flexibility of the overall structure on the vibration levels is not considered. However, the present scenario does

not emulate the exact free-free boundary conditions of the aerospace structures during the flight. The authors [5-7]

presented a methodology for vibration testing of a completely integrated aerospace vehicle under free-free boundary

condition and is validated through the experiments. In this paper, an error estimation procedure is presented in the

root-mean square values of the achieved and desired acceleration for the flexible structures.

2. General Formulation for Error Estimation

The equation of motion of a discrete structural system can be written as,

[M]{ÿ(t)} + [Cd]{ẏ(t)} + [K]{y(t)} = [F]{u(t)} (1)

where, {y(t)} → Displacement vector = {wb(t) θ(t) }T and {u(t)} → Force vector. From modal analysis approach [8,9],

the response vector, y(x, t) is given as,

{y(x, t)} = [P(x)]{qm(t)} (2)

where [P(x)] is the modal matrix and {qm(t)} is the modal response vector.

The modal matrix and other modal characteristics can be obtained by solving the eigenvalue problem as,

{[K] − [M]ω2}{φ} = {0}; [P] =
[
{φ}1 {φ}2 · · · {φ}N

]
(3)

Using Eq. (2), Eq. (1) can be rewritten as,

[M][P]{q̈m(t)} + [Cd][P]{q̇m(t)} + [K][P]{qm(t)} = [F]{u(t)} (4)

Pre-multiplying the above Eq. (4) by [P]T , we get

[P]T [M][P]{q̈m(t)} + [P]T [Cd][P]{q̇m(t)} + [P]T [K][P]{qm(t)} = [P]T [F]{u(t)} (5)

[Mm]{q̈m(t)} + [Cm]{q̇m(t)} + [Km]{qm(t)} = [Fm]{u(t)} (6)

where, [Mm] → Modal mass matrix, [Cm] → Modal damping matrix, [Km] → Modal stiffness matrix, [Fm] →
Modal force matrix

If we define the state vectors as,

{z1(t)} = {qm(t)}; {z2(t)} = {q̇m(t)} (7)

Equation (6) can be rewritten in terms of the above defined state variables as,

{
ż1(t)
ż2(t)

}
=

[
[0] [I]

−[Mm]−1[Km] −[Mm]−1[Cm]

] {
z1(t)
z2(t)

}
+

{
[0]

[Fm]

}
{u(t)} (8)

{ż(t)} = [A]{z(t)} + [B]{u(t)} (9)

where, [A]→ State matrix, [B]→ Input matrix

Considering the acceleration response, we can write the modal acceleration term q̈m(t), in terms of the state vector

z(t) and input vector u(t) as,

{q̈m(t)} = [C]{z(t)} + [D]{u(t)} (10)
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