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Abstract

The focus of this study is on estimating the multivariate extreme value distributions associated with a vector of mutually correlated

non-stationary Gaussian processes. This involves computing the joint crossing statistics of the vector processes by assuming the

crossings to be Poisson counting processes. A mathematical artifice is adopted to take into account the dependencies that exist

between the crossings of the processes. The crux in the formulation lies in the evaluation of a four-dimensional integral, which

can be computationally expensive. This difficulty is bypassed by using saddlepoint approximation to reduce the dimension of the

integral to be numerically computed to just two. The developments are illustrated through a numerical example and are validated

using Monte Carlo simulations.
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1. Introduction

Time variant reliability analysis of structural systems is usually studied in the time invariant format by defining

the problem in terms of random variables that represent the extreme values of the response within a specified time

interval. The focus therefore is on estimating the extreme value distributions of the response. For structural systems

where the response constitutes a vector of correlated processes, estimates of the system reliability can be obtained

from the knowledge of the joint multivariate extreme value distributions of the vector processes.

The problem of extreme value distributions for a vector of stationary Gaussian processes was earlier studied in [1].

This involved approximating the multivariate counting process associated with the level crossings as a multivariate

Poisson random process. The successful development of the formulation required the evaluation of a six-dimensional

integral, which was shown to be reduced to a two dimensional one using simplifying operations. This double integral

was numerically evaluated and approximations for the multivariate extreme value distributions were obtained. Efforts

to extend this methodology for non-stationary vector Gaussian processes was not possible as the non-stationary nature
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of the processes did not afford reduction in the dimension of the integrals [2] and as a result, the analytical formulation

was not numerically viable. The present study byapsses these difficulties by taking advantage of the saddlepoint

approximation method [3] to bring about a reduction in the dimension of the integrals, making the analytical approach

for estimating the joint crossing statistics, computationally efficient even for non-stationary vector Gaussian processes.

2. Problem Statement

Consider {Xi(t)}ki=1
to be a vector of correlated non-stationary Gaussian random processes which are expressible in

the form,

Xi(t) = ei(t)Xis(t), (1)

where, Xis(t) is a stationary Gaussian random process and ei(t) is a deterministic envelope function, of the form

ei(t) = ai[exp(−bit) − exp(−cit)]. (2)

Here, the parameters bi and ci determine the shape of ei(t) and ai is a normalization factor such that max[ei(t)] = 1.0.

The components Xis(t) are assumed to be mutually correlated stationary Gaussian processes, whose spectral properties

are defined in terms of the power spectral density (PSD) matrix S(ω) or the covariance matrix R(τ). For each Xi(t), let

us define Ni(αi, 0, T ) to be the number of upcrossings of level αi in the time interval [0, T ] and Xmi = max0≤t≤T Xi(t) is

defined to be the maxima of Xi(t) in the time interval [0, T ]. For a given i, Ni(αi, 0, T ) and Xmi are random variables.

For scalar processes where Xi(t) are Gaussian, it has been shown that Xmi follows Gumbel distributions. The

problem of estimating the joint probability distribution function (PDF) of Xm = {Xmi}ki=1
, when {Xi(t)}ki=1

constitute

vector correlated stationary Gaussian processes has been discussed in [1]. For the sake of completion, the salient steps

of the formulation are explained in sections 3 and 4.

3. Level Upcrossings

As previously defined, {Ni(αi, 0, T )}ki=1
is assumed to be a vector of multivariate Poisson random variables. For

simplicity, let us consider the case of a bivariate process and define three mutually independent Poisson random vari-

ables U1,U2 and U3, and λ1, λ2 and λ3, respectively represent their respective parameters. Introducing the following

transformations,

N1(α1, 0, T ) = U1 + U3, (3)

N2(α2, 0, T ) = U2 + U3,

it can be shown that, N1(α1, 0, T ) and N2(α2, 0, T ) are Poisson random variables with parameters (λ1+λ3) and (λ2+λ3),

respectively. It can be further shown that λ3 is the covariance of N1(α1, 0, T ) and N2(α2, 0, T ). Based on this, we can

write

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1

0 1 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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λ1

λ2

λ3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈N1(α1, 0, T )〉
〈N2(α2, 0, T )〉

Cov [N1(α1, 0, T ),N2(α2, 0, T )]

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (4)

where, 〈·〉 denotes the mathematical expectation operator and Cov [·] denotes the covariance function. The expectation

of the counting process, 〈Ni(αi, 0, T )〉 can be computed by integrating the mean upcrossing intensity with respect to

time. The details of this can be found in section 5.

The covariance of N1 and N2 can be expressed as

Cov[N1,N2] = 〈N1(α1, 0, T )N2(α2, 0, T )〉 − 〈N1(α1, 0, T )〉〈N2(α2, 0, T )〉. (5)

The evaluation of joint expectation 〈N1(α1, 0, T )N2(α2, 0, T )〉 is central to this study since it involves evaluation of

four dimensional integration which can be computationally demanding. A detailed discussion about evaluation of

joint expectation is presented sections 6 and 7.
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