

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jopr



### **Original Article**

# Synthesis and in-vitro cytotoxic evaluation of novel chromano-piperidine fused isoxazolidines: Discovery of a potent lead

## Satyajit Singh<sup>a,b</sup>, Anuja Chopra<sup>a</sup>, Gurpinder Singh<sup>a</sup>, Ajit K. Saxena<sup>c</sup>, Mohan Paul S. Ishar<sup>a,\*</sup>

<sup>a</sup> Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143 005, Punjab, India <sup>b</sup> Bio-Organic Laboratory, Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, G.T. Road,

Amritsar 143002, Punjab, India

<sup>c</sup> Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 80 001, J & K, India

#### ARTICLE INFO

Article history: Received 1 April 2013 Accepted 22 April 2013 Available online 16 May 2013

Keywords: Cytotoxicity 3-Formylchromone Isoxazolidine

#### ABSTRACT

Background/Aim: Chromone derivatives are naturally occurring compounds possessing a wide spectrum of biological activities such as anti-inflammatory, antifungal, antimicrobial, antiviral, antitumor and anticancer. The N and O containing five-membered heterocycles, isoxazolidines, and isoxazoline derivatives have been shown to display useful anticancer and antiviral properties. In continuation in search of chemical moieties possessing anticancer/cytotoxic potential, it was considered worthwhile to screen synthesized chromano-piperidine fused isoxazolidines (3a–j) for in-vitro cytotoxic potential against different human cancer cell lines.

31

Journal of Pharmacy Research

Methods: Compounds 2-(N-allyl/cinnamyl-anilino)-3-formylchromones were synthesized and on reaction with N-methylhydroxylamine in dichloromethane at ice cold temperature underwent intramolecular 1,3-dipolar cycloadditions of *in-situ* generated nitrones (2) to yield chromano-piperidine fused isoxazolidines (**3a-j**). All the synthesized compounds were characterized and evaluated for their cytotoxic potential against various human cancer cell lines.

Results: The compound (**3a**–**j**) under investigation for cytotoxic potential responded differently to human cancer cell lines. Compound **3e** was found be most active against neuroblastoma revealed by IC<sub>50</sub> of 10.07  $\mu$ M where as compounds **3b** and **3f** were found to potent against colon cancer cells having IC<sub>50</sub> of 12.6 and 29.7  $\mu$ M respectively.

*Conclusion*: The present investigations have provided an easy access to novel chromone derivatives bearing fused isoxazolidine moiety possessing significant cytotoxic potential.

Copyright © 2013, JPR Solutions; Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

 $<sup>^{*}</sup>$  Corresponding author. Tel.: +91 183 2258802x3321; fax +91 183 2258820.

E-mail address: mpsishar@yahoo.com (M.P.S. Ishar).

<sup>0974-6943/\$ –</sup> see front matter Copyright © 2013, JPR Solutions; Published by Reed Elsevier India Pvt. Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jopr.2013.04.018

#### 1. Introduction

Chromone nucleus has been recognized as a versatile molecular framework, which is part of the pharmacophore of a wide variety of biologically active molecules and has affinity for a variety of macromolecular targets.<sup>1</sup> Recently, we have reported the synthesis and evaluation of chromone derivatives as topoisomerase inhibitors.<sup>2</sup> Among the other cytotoxic/anticancer/antitumor chromone derivatives developed includes phosphoric ester derivatives<sup>3</sup> Flavone acetic acid derivatives.<sup>4</sup> Replacement of the furanose ring of nucleoside with isoxazolidine and isoxazoline to obtain modified nucleoside with anticancer and antiviral applications has recently drawn considerable attention<sup>5</sup> as chemical moieties bearing above nucleus were reported to possess important biological activities anticancer, antiviral, anti-inflammatory, antibacterial or antifungal activity.<sup>6</sup> The DNA intercalative and cytotoxic properties of different isoxazolidinyl polycyclic aromatic hydrocarbons have been reported.<sup>7,8</sup> Recently, we have reported synthesis and cytotoxic studies of isoxazolidines against selected human cancer cell lines.9

Keeping in view the anticancer/cytotoxic activities of chromone derivatives and isoxazolidine bearing chemical moiety, it was considered worthwhile to evaluate our previously designed and synthesized chromano-piperidine fused isoxazolidines (3a-b) along with new derivatives (3c-j) for in-vitro cytotoxic potential against different human cancer cell lines.

#### 2. Methods

#### 2.1. Synthetic chemistry

The compounds (3a-j) were obtained by adopting synthetic protocol reported by us.<sup>10</sup> which involve reaction of compounds (1a-j) with N-methylhydroxylamine in dichloromethane at ice cold temperature and the stirred solution is slowly brought to the room temperature, where the intramolecular 1,3-dipolar cycloadditions of the *in-situ* generated nitrones (2) lead to novel chromano-piperidine-fused isoxazolidines (3a–j, Scheme 1). The products were isolated by column chromatography and have been characterized by detailed spectroscopic analysis.

#### 2.2. Cytotoxic evaluation

In-vitro cytotoxic evaluation of the investigational compounds (3a-j) were carried out on Colon (COLO-205), Prostate (PC-3), Ovary (OVCAR-5), Lung (A-549) and Neuroblastoma (IMR-32) cancer cell lines following the protocol reported by Skehan et al<sup>11</sup> The cytotoxicity of compounds is determined in terms of IC<sub>50</sub> 5-flourouracil was used as positive control against Colon (COLO-205) and for Prostate (PC-3) cancer cells mitomycin was used. Paclitaxel was used as standard against Ovary (OVCAR-5) and Lung (A-549) cancer cell lines where as Adriamycin was used as positive controls for Neuroblastoma (IMR-32) cancer cell line respectively.

#### 3. Results and discussion

The results of *in-vitro* cytotoxic studies were found to be significant and presented in Table 1. Among the compounds (**3a**–**j**) under investigation for cytotoxic potential, compounds **3b** was found to be more active than standard 5-flourouracil ( $IC_{50}$  21  $\mu$ M) against colon (COLO-05) cancer cells as evident by the  $IC_{50}$  12.6  $\mu$ M and **3f** was found to be comparable ( $IC_{50}$  27.7  $\mu$ M). The compounds **3h** ( $IC_{50}$  46.9  $\mu$ M) and **3i** ( $IC_{50}$  59.4  $\mu$ M) were moderately potent, where as compounds **3e** ( $IC_{50}$  87.1  $\mu$ M) and **3d** ( $IC_{50}$  95.2  $\mu$ M) were less active and for compounds **3a**, **c**, **g** and **j** colon cancer cells were found to be resistant.

The results for prostate (PC-3) cancer cells revealed that compounds **3b**, **e**, **f** and **h** were able to inhibit the growth of cancer but found to be less active than positive control mitomycin as observed from the value of IC<sub>50</sub> (Table 1) where as the rest of tested compounds were not active toward prostate cancer cells. Similar were the results for ovary (OVCAR-5) cancer cells where only compounds **3b** (IC<sub>50</sub> 76.5  $\mu$ M) and **3e** (IC<sub>50</sub> 85.5  $\mu$ M) were shown to possess moderate cytotoxic



Scheme 1 – Synthesis of different Chromano-piperidine fused Isoxazolidines.

Download English Version:

# https://daneshyari.com/en/article/8541761

Download Persian Version:

https://daneshyari.com/article/8541761

Daneshyari.com