

Available online at www.sciencedirect.com
SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/JOPR

Original Article

Does nature provide the best therapeutic options? Synthesis and anti-inflammatory activity of a naturally occurring homoisoflavanone and its enantiomer

Mahidansha M. Shaikh^{a,b}, Hendrik G. Kruger^a, Peter Smith^c, Johannes Bodenstein^{b,*}, Karen du Toit^b

^a School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa

^b School of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa

^c Division of Pharmacology, University of Cape Town, Rondebosch, South Africa

ARTICLE INFO

Article history: Received 2 August 2012 Accepted 4 November 2012

Keywords: Enantiomers Racemate Homoisoflavanones Anti-inflammatory Cytotoxicity

ABSTRACT

The Hyacinthaceae family is one of the most important plant families across the eastern seaboard of Africa. The (R)-5 enantiomer of a homoisoflavanone with anti-inflammatory activity was previously isolated from members of this family, namely *Drimiopsis burkei* Bak. and *Scilla nervosa* (Burch.) Jessop. However, the activity of the (S)-5 enantiomer is unknown. In this paper, we report the synthesis and structural elucidation, in vivo anti-inflammatory activity and in vitro cytotoxic properties of both the (R)-5 and (S)-5 enantiomers and the racemate. The enantiomers and racemate exhibited a relatively short duration of action and activity similar to that of the known non-steroidal anti-inflammatory drug, diclofenac. The naturally occurring enantiomer exhibited the least cytotoxicity. Copyright © 2013, JPR Solutions; Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

1. Introduction

A homoisoflavanone, (3R)-5,7-dimethoxy-(4'-hydroxybenzyl)-4-chromanone of the compound (R)-5, was previously isolated from Scilla nervosa (Burch.) Jessop¹ as well as from Drimiopsis burkei Bak.² The traditional use of S. nervosa for rheumatic fever indicates possible anti-inflammatory properties of its constituents.³ Subsequent studies showed strong inhibition of prostaglandin synthesis in microsomal cells by the isolated homoisoflavanone, supporting the traditional use of S. nervosa.⁴ Studies indicate that stereoselectivity plays an important role in the anti-inflammatory activities of non-steroidal antiinflammatory drugs.⁵ The decision to employ either a racemate or a pure enantiomer for therapeutic purposes is usually based on the diverse mechanisms of actions of the enantiomers.⁶ The absolute configuration at C-3 position of a series of naturally occurring homoisoflavanones was investigated using circular dichroism.^{2,7} The (R)-configuration was established for all of these compounds.^{2,7} Therefore, the antiinflammatory activity of the naturally occurring (R)-5 enantiomer is known, but the activity of the (S)-5 enantiomer and racemate is unknown. A study of the anti-inflammatory

0974-6943/\$ – see front matter Copyright © 2013, JPR Solutions; Published by Reed Elsevier India Pvt. Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jopr.2012.11.008

^{*} Corresponding author. Tel.: +27 260 7500; fax: +27 260 7907.

E-mail address: bodensteinj@ukzn.ac.za (J. Bodenstein).

activity of both the enantiomers could provide an answer to the question whether nature truly provides the best therapeutic options.

2. Materials and methods

2.1. General experimental procedures

All reagents were obtained from Aldrich chemicals suppliers and solvents were obtained from a commercial supplier and used without further purification. All reaction mixtures were magnetically stirred and monitored by TLC using Kieselgel 60 F254 obtained from Merck (Darmstadt, Germany). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III at 400 MHz with CDCl₃ as internal reference. The value for chemical shift (δ) is given in ppm and coupling constants (I) in Hertz (Hz). Melting points were recorded with a Mel-Temp melting point apparatus in open capillaries and are uncorrected. Optical rotations were measured at room temperature in chloroform using a Perkin Elmer Polarimeter-Model 341. High-resolution mass spectroscopy (HRMS) data was recorded on a Waters Micromass Q-Tof Micro mass spectrometer with a lock spray source.

2.2. Synthesis and structural elucidation of homoisoflavanones

2.2.1. 3-(3,5-Dimethoxyphenoxy) propanoic acid 2

Synthetic procedure, ¹H and ¹³C NMR data were previously reported⁸; mass $m/z = 227 (M + 1)^+$. $R_f = 0.24$ on silicagel with ethyl acetate/hexane (30:70).

2.2.2. 5,7-Dimethoxy-4-chromanone 3

Synthetic procedure, ¹H and ¹³C NMR data were previously reported⁸; mass $m/z = 209 (M + 1)^+$. $R_f = 0.54$ on silicagel with ethyl acetate/hexane (30:70).

2.2.3. (E)-5,7-Dimethoxy-3-(4'-hydroxybenzylidene)-4-chromanone 4

Synthetic procedure, ¹H and ¹³C NMR data were previously reported.⁸ HRMS calcd for $C_{18}H_{17}O_4 [M + H]^+$ 297.1049, found 297.1121; $R_f = 0.58$ on silicagel with ethyl acetate/hexane (30:70).

2.2.4. 5,7-Dimethoxy-3-(4'-hydroxybenzyl)-4-chromanone (R,S)-5

To a solution of 5,7-dimethoxy-3-(4'-hydroxybenzylidene)-4chromanone (1.0 g, 3.2 mmol) in a mixture of anhydrous MeOH/THF (1:1, 20 ml) at a temperature of 0 °C, Pd/c (0.4 g, 3.8 mmol) was added portion wise. H₂ gas was passed through the stirred mixture at room temperature for 0.5 h after which it was filtered through celite and concentrated under reduced pressure. The residue obtained after evaporation of the solvent was chromatographed over a silicagel column using mixture of ethyl acetate/hexane (20:80) as eluent to produce the homoisoflavanone (R,S)-5. Yield 68%; R_f = 0.43 (20:80 ethyl acetate/hexane); mp 174–176 °C; light yellow powder; ¹H NMR (400 MHz, CDCl₃) δ : 2.65 (1H, dd, J = 10.4, 13.5 Hz, H-9a), 2.68–2.70 (1H, m, H-3), 3.15 (1H, dd, J = 4.1, 13.4 Hz, H-9b), 3.81 (3H, s, Ar-OCH₃-7), 3.86 (3H, s, Ar–OCH₃-5), 4.12 (1H, dd, J = 4.2, 7.0 Hz, H-2a), 4.27 (1H, dd, J = 3.9, 11.2 Hz, H-2b), 6.06 (1H, s, H-8), 6.07 (1H, s, H-6), 6.80 (2H, d, J = 8.4 Hz, H-2',6'), 7.07 (2H, d, J = 8.4 Hz, H-3',5'); ¹³C NMR (100 MHz, CDCl₃) 32.1 (CH₂, C-9), 48.6 (CH, C-3), 55.0 (OCH₃, C-7), 55.8 (OCH₃, C-5), 68.8 (CH₂, C-2), 92.8 (CH, C-8), 93.2 (CH, C-6), 130.2 (CH, C-2',6'), 105.4 (C, C-4a), 115.5 (CH, C-3',5'), 130.4 (C, C-1'), 154.7 (C, C-4'), 162.8 (C, C-7), 165.0 (C, C-8a), 165.7 (C, C-5), 191.9 (C, C-4); HRMS (EI) calcd for C₁₈H₁₉O₅ 315.1154, found 315.1224.

2.2.5. 5,7-Dimethoxy-3-(4'-hydroxybenzyl)-4-chromanol (R,R)-6/(R,S)-6

NaBH₄ (0.3 g, 9.5 mmol) was added portion wise to a solution of 5,7-dimethoxy-3-(4-hydroxybenzyl)-4-chromanone (1.0 g, 3.1 mmol) in anhydrous MeOH (15 ml) at a temperature of 0 °C under nitrogen atmosphere. The mixture was then allowed to reach room temperature and stirred for 1 h. The reaction mixture was quenched with water and extracted with ethyl acetate (3 \times 30). The organic layer was washed with brine, dried over magnesium sulphate, and concentrated under reduced pressure to produce a viscous oil mixture of (R,R)-6 and (R,S)-6. The residue obtained after evaporation of the solvent was chromatographed over a silicagel column using mixture of ethyl acetate/hexane (30:70) as eluent to produce an oily syrup at an overall yield of 88%. Compound (R,R)-6; $R_f = 0.48$ (30:70 ethyl acetate/hexane); oily syrup; ¹H NMR (400 MHz, CDCl₃) δ: 2.08–2.15 (1H, m, H-3), 2.58 (1H, dd, *J* = 2.6, 7.2 Hz, H-9a), 2.85 (1H, dd, J = 2.6, 7.2 Hz, H-9b), 3.78 (3H, s, Ar-OCH₃-5), 3.83 (3H, s, Ar-OCH₃-7), 3.99 (2H, d, J = 8.2 Hz, H-2a & 2b), 4.66 (1H, d, J = 2.5 Hz, H-4), 5.99 (1H, d, J = 7.1 Hz, H-8), 6.01 (1H, d, J = 7.1 Hz, H-6), 6.76 (2H, d, J = 8.2 Hz, H-3', 5'), 7.12 (2H, d, J = 8.0 Hz, H-2',6'); ¹³C NMR (100 MHz, CDCl₃) 31.9 (CH₂, C-9), 40.1 (CH, C-3), 55.3 (OCH₃, C-7), 55.4 (OCH₃, C-5), 59.6 (CH, C-4), 65.2 (CH₂, C-2), 91.3 (CH, C-6), 93.0 (CH, C-8), 106.6 (C, C-4a), 115.2 (CH, C-3',5'), 130.2 (C, C-1'), 131.6 (CH, C-2',6'), 153.8 (C, C-4'), 155.9 (C, C-5), 159.2 (C, C-8a), 161.1 (C, C-7); mass $m/z = 317 (M + 1)^+$.

Compound (R,S)-6; $R_f = 0.45$ (30:70 ethyl acetate/hexane); oily syrup; ¹H NMR (400 MHz, CDCl₃) δ : 2.12-2.18 (1H, m, H-3), 2.40 (1H, dd, J = 2.9, 7.9 Hz, H-9a), 2.55 (1H, dd, J = 2.9, 7.9 Hz, H-9b), 3.76 (3H, s, Ar–OCH₃-5), 3.81 (3H, s, Ar–OCH₃-7), 3.90 (1H, dd, J = 1.8, 1.8 Hz, H-2a), 4.07 (1H, dd, J = 1.9, 2.0 Hz, H-2b), 4.62 (1H, s, H-4), 6.06 (1H, d, J = 3.9 Hz, H-6), 6.07 (1H, d, J = 3.9 Hz, H-8), 6.74 (2H, d, J = 8.3 Hz, H-3',5'), 7.04 (2H, d, J = 8.3 Hz, H-2',6'); ¹³C NMR (100 MHz, CDCl₃) 33.6 (CH₂, C-9), 40.5 (CH, C-3), 55.3 (OCH₃, C-7), 55.5 (OCH₃, C-5), 62.9 (CH, C-4), 64.3 (CH₂, C-2), 91.8 (CH, C-6), 93.2 (CH, C-8), 104.9 (C, C-4a), 115.3 (CH, C-3',5'), 130.2 (C, C-1'), 131.2 (CH, C-2',6'), 154.2 (C, C-4'), 155.8 (C, C-5), 159.8 (C, C-8a), 161.0 (C, C-7); mass m/z = 317 (M + 1)⁺.

2.2.6. 5,7-Dimethoxy-3-(4'-hydroxybenzyl)-4-chromanone (R)-5 or (S)-5

To a mixture of either (R,R)-6 or (R,S)-6 respectively (0.1 g, 1.0 mmol) in acetic acid (4 ml) was added CrO_3 (0.16 g, 5.0 mmol). The reaction mixture was stirred at room temperature and allowed to stand for 0.5 h. The solvent was evaporated and extracted with ethyl acetate (2 × 15 ml). The organic layer was washed with brine (2 × 15 ml) and dried over magnesium sulphate. The residue obtained after evaporation of the solvent was chromatographed over a silicagel column using a mixture of ethyl acetate/hexane (20:80) as eluent to

Download English Version:

https://daneshyari.com/en/article/8542457

Download Persian Version:

https://daneshyari.com/article/8542457

Daneshyari.com