Accepted Manuscript

Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests

Neemias Cintra Fernandes, Lara Barroso Brito, Gessyca Gonçalves Costa, Stephânia Fleury Taveira, Marcílio Sérgio Soares Cunha–Filho, Gisele Augusto Rodrigues Oliveira, Ricardo Neves Marreto

PII: S0009-2797(18)30203-5

DOI: 10.1016/j.cbi.2018.06.003

Reference: CBI 8315

To appear in: Chemico-Biological Interactions

Received Date: 14 February 2018

Revised Date: 14 May 2018
Accepted Date: 4 June 2018

Please cite this article as: N.C. Fernandes, L.B. Brito, Gessyca.Gonç. Costa, Stephâ.Fleury. Taveira, Marcí.Sé.Soares. Cunha–Filho, G.A.R. Oliveira, R.N. Marreto, Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests, *Chemico-Biological Interactions* (2018), doi: 10.1016/j.cbi.2018.06.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Removal of azo dye using Fenton and Fenton-like processes: evaluation of process factors by Box-Behnken design and ecotoxicity tests

Neemias Cintra Fernandes^{a, b}, Lara Barroso Brito^c, Gessyca Gonçalves Costa^c, Stephânia Fleury Taveira^a, Marcílio Sérgio Soares Cunha–Filho^d, Gisele Augusto Rodrigues Oliveira^{c, e}, Ricardo Neves Marreto^{a,*}

^aLaboratory of Nanosystems and Drug Delivery Systems (NanoSYS), Faculty of Pharmacy, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil

^bDepartment of Chemistry, Instituto Federal de Tecnologia, Goiânia, GO, Brazil

^cLaboratory in Alternative Methods, Faculty of Pharmacy, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil

^dLaboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília, DF, Brazil

^eNational Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Emerging and Radioactive Contaminants (INCT-DATREM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.

*Correspondence: Prof. Ricardo Neves Marreto. E-mail: ricardomarreto@ufg.br Tel/fax: +55 62 3209-6037.

Keywords: Textile dye; Fenton; Acute toxicity; Phytotoxicity; Artemia salina; Zebrafish

Abstract

The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box–Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H₂O₂ [H₂O_{2residual}], and the ecotoxicity of the treated samples (lettuce seed, *Artemia salina*, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H₂O_{2residual}] was significantly affected by initial [H₂O₂] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H₂O₂] only. *A. salina* mortality was

Download English Version:

https://daneshyari.com/en/article/8544685

Download Persian Version:

https://daneshyari.com/article/8544685

<u>Daneshyari.com</u>