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a b s t r a c t

Computational models have earned broad acceptance for assessing chemical toxicity during early stages
of drug discovery or environmental safety assessment. The majority of publicly available QSAR toxicity
models have been developed for datasets including mostly drugs or drug-like compounds. We have
evaluated and compared chemical spaces occupied by cosmetics, drugs, and pesticides, and explored
whether current computational models of toxicity endpoints can be universally applied to all these
chemicals. Our analysis of the chemical space overlap and applicability domain (AD) of models built
previously for twenty different toxicity endpoints showed that most of these models afforded high
coverage (>90%) for all three classes of compounds analyzed herein. Only T. pyriformis models demon-
strated lower coverage for drugs and pesticides (38% and 54%, respectively). These results show that, for
the most part, historical QSAR models built with data available for different toxicity endpoints can be
used for toxicity assessment of novel chemicals irrespective of the intended commercial use; however,
the AD restriction is necessary to assure the expected prediction accuracy. Local models may need to be
developed to capture chemicals that appear as outliers with respect to global models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Chemical toxicity assessment is a critical point in regulatory
decision making that concerns the release of drugs or industrial
chemicals into production, which enables their human or envi-
ronmental exposure (Parasuraman, 2011). There exists also a vari-
ety of natural and synthetic substances that are exposed to humans
and/or the environment that have never been evaluated in any
toxicity testing protocol (Chuprina et al., 2010; Egeghy et al., 2012).
Over the years, the society has tolerated the use of animals in
laboratory toxicity testing. However, in recent years, there has been
an increased pressure on scientists and regulatory agencies to

replace potentially hazardous chemicals by safer alternatives
(Collins, 2003; Schulte et al., 2013). In addition, there has been a
strong push on the part of both regulatory agencies such as FDA and
EPA in the United States and their counterparts around the world to
avoid animal testing of every chemical as such testing has become
increasingly unsustainable in terms of both cost and time needed to
conduct animal trials (Burden et al., 2015).

The development of the alternative in vitro and in silico ap-
proaches has been encouraged and supported by both NIH and EPA
through large-scale programs such as ToxCast project (Dix et al.,
2007) and the Tox21 consortium (Tice et al., 2013). Similar pro-
grams such as Endocrine Disruptors Prioritization List (http://ec.
europa.eu/environment/chemicals/endocrine/index_en.htm) and
the priority substances for water safety (European Union, 2013)
have been funded by the European Union. Since the acceptance of
Registration, Evaluation, Authorization, and Restriction of Chem-
icals (REACH) legislation in 2006 by the European Union (European
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Union, 2007; Nicolotti et al., 2014), the use of structural alerts and
statistical QSAR models (often collectively referred to as (Q)SAR)
have become a major computational approach to chemical safety
assessment and regulatory decision support.

The majority of publicly available models for toxicity prediction
have been built for drugs or drug candidates (Benfenati et al., 2009;
Melnikov et al., 2016) or environmental chemicals (Naven and
Louise-May 2015). In contrast, computational toxicity models for
another large group of industrial chemicals, namely cosmetics
products have been developed to a much lesser extent as the ani-
mal testing has been used as a preferred approach. However, with
recent regulations banning the use of animals for testing of the
cosmetics products (European Commission, 2013), there has been a
resurgence of interest in employing computational models for their
toxicity assessment (Bois et al., 2016; Cronin et al., 2012).

Naturally, a question can be posed as to whether toxicity pre-
diction models built for environmental chemicals or drug mole-
cules could be employed for the cosmetics products. The answer to
this question depends on the overlap of the chemical spaces
occupied by cosmetics, drugs, and environmental chemicals and
the size of the applicability domain (AD) of the respective models.
AD is commonly defined as the threshold of similarity between a
new chemical and molecules in the training set used to develop the
respective QSAR model (Netzeva et al., 2005; Tropsha, 2010;
Tropsha and Golbraikh, 2007); only predictions for new mole-
cules within the AD of QSAR models, i.e., relatively similar to the
modeling set are considered reliable. Importantly, the size of the AD
is fully defined by the size and diversity of the modeling set and the
computational method used to develop QSAR models. For instance,
it is known that the chemical space of drugs has been changing over
the past few decades (Deng et al., 2013) creating a challenge for
“old” models’ ability to evaluate new compounds. The applicability
of current models to many new compounds was also questioned
due to limited size and diversity of data available publicly for model
building (Kulkarni et al., 2016).

The considerations above capture both significant advantages
and challenges associated with the idea of using models developed
with one group of industrial chemicals to evaluate toxicity of
another group. Obvious advantages deal with significant savings in
time and effort afforded by the opportunity to use previously
developed models of multiple toxicity endpoints relevant to drugs
and/or environmental chemicals (e.g., pesticides) to evaluate
toxicity of cosmetic products. However, since chemicals used in
different areas of commerce such as drug, chemical, or cosmetic
industries are developed with very different applications in mind,
there is no a priori reason to expect that their respective chemical
spaces overlap. Taking the issue of the AD into account, in-
vestigations into studying the degree of such overlap and the
applicability of models developed for one group of chemicals to
predict toxicity of another group are potentially highly impactful
for the respective industries, especially, cosmetics. To the best of
our knowledge, such investigations have not been conducted in the
public domain with large groups of industrial chemicals.

Herein, we have aimed to compare chemical spaces occupied by
cosmetics, drugs, and pesticides, and analyze whether current
computational models of different toxicity endpoints can be uni-
versally applied to all chemicals. To achieve these aims, we have (i)
compiled, curated, and integrated chemical structures of known
cosmetics, drugs, and pesticides; (ii) analyzed the distribution of
these compounds in chemical space and estimated the structural
similarity between the datasets; (iii) performed cluster analysis
followed by toxicity annotation comparison for structurally similar
compounds in the same clusters; (iv) predicted toxicities of inves-
tigated compounds with QSAR models for endpoints developed
earlier by us; (v) and analyzed the coverage of these models

separately for drugs, cosmetics, and pesticides. We observed that,
with some exceptions, the majority of compounds in all three
groups of industrial chemicals were found within the AD of QSAR
models built previously for twenty different toxicity endpoints.
These findings open the door for the development and employ-
ment of global toxicity models applicable to the majority of
chemicals in commerce while suggesting the need to develop local
models that could capture AD outliers of the global models.

2. Materials and methods

2.1. Datasets

2.1.1. Cosmetic ingredients (Dataset A)
The cosmetics ingredients were retrieved from the CosIng, the

European Commission database for information on cosmetic sub-
stances and ingredients (https://ec.europa.eu/growth/sectors/
cosmetics/cosing_en). This dataset included 5166 chemical re-
cords with a defined chemical structure. After curation (vide infra),
3930 unique chemical substances were kept for this study.

2.1.2. Drugs (Dataset B)
We retrieved 7000 chemical records from the 2014 Leadscope

Marketed Drugs Database (http://www.leadscope.com/marketed_
drugs_database/). After curation, 4671 unique chemical sub-
stances were kept for this study.

2.1.3. Pesticides (Dataset C)
We retrieved 3001 chemical records from the EPA's Pesticide

Product Information System Database (https://www.epa.gov/
ingredients-used-pesticide-products/ppis-download-product-
information-data). After curation, 2044 unique chemical sub-
stances were kept for this study.

2.2. Data curation

The datasets were thoroughly curated using the workflows
proposed earlier by our group (Fourches et al., 2016, 2015, 2010).
Briefly, specific chemotypes such as aromatic and nitro groups as
well as double bonds were normalized, and absolute stereo con-
figurations removed using the ChemAxon Standardizer
(v.16.10.24.0, ChemAxon, Budapest, Hungary, http://www.
chemaxon.com). Polymers, substances with undefined chemical
substructure, and substances with molecular weight above 1000
DA were removed. Counterions, inorganic salts, organometallic
compounds, and mixtures were removed. After structural stan-
dardization, the duplicates were identified with HiT QSAR software
(Kuz’min et al., 2008) and carefully analyzed. Within the same
dataset, only one record was kept and all duplicates were elimi-
nated. The entire collection (datasets A, B, and C) comprised 9785
unique chemical compounds. As one can see in Fig. 1, 99 com-
pounds were simultaneously labeled as cosmetics, drug, and
pesticide; 220 were labeled as cosmetics and drugs; 270 were
labeled as cosmetics and pesticides; 172 were labeled as drugs and
pesticides; 3341 compounds were labeled only as cosmetics; 4180
were labeled only as drugs; and 1503 were labeled only as
pesticides.

2.3. Molecular descriptors

We have calculated the same molecular descriptors as in our
previously built QSAR models of toxicity endpoints used in this
study (see Table 1 for more detailed information about descriptors,
models, and respective references). Majority of the models were
built using DRAGON descriptors (Talete SRL, 2007). hERG models
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