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A B S T R A C T

Mitochondrial dysfunction has been considered as an important contributing factor in the etiology of drug-
induced organ toxicity, and even plays an important role in the pathogenesis of some diseases. The objective of
this investigation was to develop a novel prediction model of drug-induced mitochondrial toxicity by using a
naïve Bayes classifier. For comparison, the recursive partitioning classifier prediction model was also con-
structed. Among these methods, the prediction performance of naïve Bayes classifier established here showed
best, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training
set and external test set were 95 ± 0.6% and 81 ± 1.1%, respectively. In addition, four important molecular
descriptors and some representative substructures of toxicants produced by ECFP_6 fingerprints were identified.
We hope the established naïve Bayes prediction model can be employed for the mitochondrial toxicity assess-
ment, and these obtained important information of mitochondrial toxicants can provide guidance for medicinal
chemists working in drug discovery and lead optimization.

1. Introduction

Mitochondria are essential organelles and play a wide range of di-
verse functions in the cell, such as energy production, cellular re-
spiration, regulation of intracellular homeostasis, reduction/oxidation
balance, proliferation, and apoptosis (Malty et al., 2015; Nunnari and
Suomalainen, 2012; Vlasblom et al., 2014). Mitochondrial impairment
has been considered as an important contributing factor in the etiology
of drug-induced organ toxicity, such as hepatotoxicity (Liu et al., 2016),
cardiotoxicity (Varga et al., 2015), and acute kidney injury (AKI)
(Wallace and Starkov, 2000). Moreover, mitochondrial dysfunction has
also been considered a potential unifying factor in the pathogenesis of
some diseases, including cancer (Guaragnella et al., 2014), neurode-
generative disorders (Bhat et al., 2015; Moon and Paek, 2015), obesity
(Bournat and Brown, 2010; Nasrallah and Horvath, 2014) and diabetes
(Sivitz and Yorek, 2010). Presently, numerous environmental chemicals
and drugs have been reported to impair mitochondrial function (Chan
et al., 2005; Dykens and Will, 2007; Dykens et al., 2007; Hynes et al.,
2013; Wills et al., 2013). For example, the Food and Drug Adminis-
tration has issued 528 Black Box Warnings for patients through 2010,
and approximately 35% of those were associated with mitochondrial

toxicity (O'Connor, 2010). Notably, some drugs, such as troglitazone
and cerivastatin, were withdrawn from the market due to they directly/
indirectly impair mitochondrial function. (Golomb and Evans, 2008;
Kaufmann et al., 2006; Okuda et al., 2010; Rachek et al., 2009). Mi-
tochondrial toxicity has been considered as a major cause for preclinical
therapeutic candidate failures as well as post market drug withdrawals
(Dykens and Will, 2007). Thus, establishing a simple, fast and high-
throughput screening approach alternative to experimental mitochon-
drial toxicity evaluation has become an important and urgent task in
the early stages of drug development, which would avoid candidate
failures, allowing resources to be focused on those compounds with the
highest chance of success to the market.

Computational techniques for hazard identification and risk as-
sessment have become a research focus in recent years. Developing and
using alternative approaches to the experimental toxicological assess-
ment has been explicitly encouraged by some legislations (OECD;
REACH, 2011). Presently, various computational methods for organ-
level toxicities have been extensively developed and reported. How-
ever, the reports of in silico prediction methods for drug-induced mi-
tochondrial toxicity were very few. For example, to date, only Zhang
et al. (2009) developed a SVM prediction model based on 27 molecular
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descriptors, which gave concordance of 84.59% for the training set, and
77.14% for external test set. Naven et al. (2013) developed structure-
activity relationships for mitochondrial dysfunction, and identified 11
toxicophores associated with the mechanism of potent uncoupling ac-
tivity. Nelms et al. (2015) developed an in silico profiler based on the
different mechanistic information, and obtained mechanism based eight
structural alerts for mitochondrial toxicity. All of these suggested that
creating and developing new computational method for mitochondrial
toxicity prediction with an reasonable accuracy is important and ne-
cessary. Thus, in this investigation, the naïve Bayes classifier approach
was considered to assess drug-induced mitochondrial toxicity. The
naïve Bayes classification model based on the Bayes' theorem with the
conditional independence assumptions, in which each variable can be
independently estimated as a one dimensional variable (Berger, 2013;
Box and Tiao, 2011). Presently, the naïve Bayes classifier has been
widely applied for the ADMET related properties prediction and drug-
likeness analysis (Chen et al., 2011; Li et al., 2014; Shi et al., 2015; Tian
et al., 2012, 2014; Wang et al., 2016; Zhang et al., 2016a, 2017).

The aim of this investigation is to build a novel prediction model of
drug-induced mitochondrial toxicity with using naïve Bayes method,
and identify some important molecular descriptors and substructures of
mitochondrial toxicants. The established prediction models will be
validated by the internal 5-fold cross validation and external test set.
We hope the established naïve Bayes prediction model of mitochondrial
toxicity could be applied to filter early-stage molecules for this potential
adverse effect. Furthermore, the identified important molecular de-
scriptors and substructures of toxicants would give a better under-
standing of the mitochondrial toxicants, and provide guidance for
medicinal chemists in the design of new candidate drugs and lead op-
timization, ultimately reducing the attrition rate in later stages of drug
development.

2. Materials and methods

2.1. Mitochondrial toxicity dataset collection

The dataset, containing 288 agents, was extracted from Zhang et al.
(2009). Within this dataset, 171 chemicals were designed as mi-
tochondrial toxicants according to the literature reported, and 117
agents were considered as negatives according to FDA-approved drug.
In this investigation, five compounds were deleted because of four
compounds were duplicate, and one compound was not found. Finally,
the 283 compounds, containing 168 mitochondrial toxicants and 115
non-toxicants, were remained. The chemical structures and categories
of these compounds have been given in the supplementary material
(Table S1). Then, these selected compounds were randomly separated
into five equal-sized subsets. Of the five subsets, four subsets were used
as training set (226 compounds, 80% of the data), and the remaining
one subset was employed for the test set (57 compounds, 20% of the
data) (Table 1). This process was repeated five times in such a way that
each subset was used exactly once as the external test set. Finally, five
datasets (Dataset 1–5) were obtained.

2.2. Calculations of molecular descriptors and fingerprints

All the molecular descriptors were calculated by Discovery Studio
3.5 software (http://accelrys.com/products/discovery-studio/). In this

investigation, 23 descriptors that widely applied in the ADME/T pre-
diction were selected (Hou and Wang, 2008; Wang et al., 2012; Zhang
et al., 2015). The descriptors include the number of C atom, number of
H atom, number of O atom, ALogP, Apol, logD, molecular solubility,
molecular weight, number of rings, number of rings 6, number of
aromatic rings, number of H acceptors, number of H donors, number of
rotatable bonds, molecular fractional polar SASA, molecular fractional
polar surface area, molecular polar SASA, molecular polar surface area,
molecular SASA, molecular SAVol, molecular surface area, Wiener and
Zagreb.

In addition, the topological fingerprints are designed to capture
molecular features relevant to molecular activity, and recently applied
in substructure searching, drug activity predicting, similarity searching,
clustering, and virtual screening (Rogers and Hahn, 2010). Previous
researches have proved the topological fingerprints significantly influ-
ence the prediction performance of naïve Bayes classifier (Zhang et al.,
2016a, 2017). In this investigation, the ECFP_6 fingerprints (extended
connectivity fingerprints (ECFPs)) were used to analyze the structural
features of toxic/non-toxic compounds because of it could give the
highest prediction accuracy.

2.3. Naïve Bayes (NB) classifiers

The naive Bayesian categorization technique was used to develop
the classifiers to discriminate between toxicants and non-toxicants. The
naïve Bayes classifier is a probabilistic classification method based on
Bayes's theorem with strong independence assumptions between the
features. The mathematical details of naïve Bayes classifier were de-
scribed previously (Berger, 2013; Box and Tiao, 2011; Zhang et al.,
2016b). In this investigation, the naïve Bayes classifiers were developed
by using Discovery Studio (DS) version 3.5 (http://accelrys.com/
products/discovery-studio/). The cross validation of the training set
was assigned to 5. In addition, selection of the number of bins appeared
in the histogram, which was used to divide the entire range of observed
values for the variable into a series of intervals, and then count how
many values fall into each interval (Shimazaki and Shinomoto, 2007).
The bin size critically influences the performance of naïve Bayes model.
In this study, the parameter of “number of Bins” was changed from 10
to 300 systematically in order to find a better naïve Bayes classifier
model. The “Learn Options” was selected as Validate Models, Ignore
uninformative Bins and Equipopulate Bins. The ECFP_6 was picked as
“Model Domain Fingerprint".

2.4. Recursive partitioning (RP) classifier

As a statistical method for multivariable analysis, the recursive
partitioning (RP) creates a decision tree that divides data by using a
hierarchical set of yes/no questions per node to split a data set into
smaller subsets (Cook and Goldman, 1984). The splitting process con-
tinues until no more significant nodes are obtained or when a minimum
number of samples per node is reached. In the present investigation, the
recursive partitioning classifiers were built using the Discovery Studio
3.5 software package. The 5-fold cross-validation was used, the split
method was set as Gini index, the weighting method was defied as
Uniform, and the minimum number of samples at each node was used
as 10 to avoid excessive partitioning. In addition, the maximum tree
depth was changed from 2 to 30 systematically in order to find a better
RP model.

2.5. Validating the prediction accuracies of the classification models

The following parameters were used to assess the predictive per-
formance of the classification models: the overall prediction accuracy
(Q(Eq. (1))); sensitivity (SE (Eq. (2))), the prediction accuracy for the
toxicants); specificity, (SP (Eq. (3))), the prediction accuracy for the
non-toxicants); positive predictive value (PPV (Eq. (4))); negative

Table 1
The number of compounds applied in each of the training sets and test sets.

training set test set sum

toxicants 134 34 168
non-toxicants 92 23 115
total 226 57 283
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