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The European Union’s ban on animal testing for cosmetic ingredients and products has generated a strong
momentum for the development of in silico and in vitro alternative methods. One of the focus of the
COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic
modeling and in vitro data integration. In our experience, mathematical or computer modeling and in
vitro experiments are complementary. We present here a summary of the main models and results
obtained within the framework of the project on these topics. A first section presents our work at the
organelle and cellular level. We then go toward modeling cell levels effects (monitored continuously),
multiscale physiologically based pharmacokinetic and effect models, and route to route extrapolation.
We follow with a short presentation of the automated KNIME workflows developed for dissemination
and easy use of the models. We end with a discussion of two challenges to the field: our limited ability to
deal with massive data and complex computations.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The European decision to ban animal testing for cosmetic
ingredients has generated a strong momentum for the develop-
ment of in silico and in vitro alternative methods. One of the aims of
the COSMOS project (funded by the European Commission and by
Cosmetics Europe under the 7th Framework Programme) was to
develop approaches for the ab initio prediction of kinetics and toxic
effects through multiscale pharmacokinetic modeling and in vitro
data integration. We present here a summary of the relevant
models and results obtained by the COSMOS team. Our major
activities were focused on modeling toxicokinetics and toxicody-
namics (effects) in vitro and in vivo, which are required to perform
quantitative in vitro to in vivo extrapolation (QIVIVE) (Adler et al.,
2011; Bessems et al., 2014; Coecke et al., 2012; Quignot et al., 2014).

Kinetic modeling is a relatively well developed field, with well
established compartmental or physiologically  based
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pharmacokinetic (PBPK) models (Corley, 2010; Gibaldi and Perrier,
1982; Peters, 2011). In PBPK models, the transport and overall fate
of the substance administered is governed by anatomic and
physiological considerations. The models can have a generic
structure, which makes them easier to use (no need to develop
new equations for a new substance) (Beaudouin et al., 2010; Corley,
2010; Jamei et al., 2009; Willmann et al., 2007). Most of their
parameters are physiological, meaning that they do not depend on
the chemical considered, but solely on the subject exposed (at least
when exposure to the chemical does not alter appreciably the body
functions, such as blood flows). Compilations of average parameter
values for several species are available, and even values for specific
sub-groups (children, pregnant women, elderly people . .. ) (Bois
et al., 2010). The few remaining parameters, which depend on
chemical structure, are sufficiently mechanistic to be obtained by
quantitative structure-property relationships (QSPR), or in vitro
experiments (Hamon et al., 2015). In vitro kinetic models are
different from PBPK models, in that they are not particularly
physiological, but rather represent the in vitro system modeled.
Some generic models have been proposed for simple in vitro
systems - including by us, the virtual cell based assay (VCBA)
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model, see below - but more complex systems (e.g., bi-
compartmental systems, micro-chips) require specific develop-
ments (Armitage et al., 2014; Crean et al., 2014; Ouattara et al.,
2011; Truisi et al., 2015; Wilmes et al., 2013; Zaldivar et al., 2010).

The state of the art is far less advanced for “extrapolatable”
toxicodynamic models. Traditional toxicodynamic models are
similar to compartmental models (and in fact extend those with ad
hoc “effect” compartments). They are data fitted and thus specific
for a given experiment or clinical trial (Csajka and Verotta, 2006);
they are not designed for extrapolations (except very basic time
and dose extrapolations). The equivalent of PBPK models in
toxicodynamics are biologically-based models. Among the earliest
of such models were the biologically based carcinogenesis models
(Armitage, 1985; Moolgavkar and Knudson, 1981). However, given
the obscurity and complexity of the cancer process (still not
elucidated), those models were at the same time too simple (to
avoid criticisms) and too complex (to be used in a regulatory
framework). They were never really used for risk assessment,
except in the extremely simplified form of the multistage cancer
dose-response model (Crump and Howe, 1984). A new generation
of models is emerging with “systems biology” models (Geenen
et al, 2012; Jusko, 2013) and “physiome” (or virtual human)
models (Bassingthwaighte, 2000; Hunter and Borg, 2003). Systems
biology models are bottom-up models rooted in biochemistry and
benefiting from our increasing understanding of cellular signaling
and transcriptional control pathways (facilitated by the explosion
of omics data). Physiome models are inherently top-down and
multiscale and therefore the closest equivalent to PBPK models
(PBPK models can in fact be thought of as vascular body-level
solute transport models). They started as high-level descriptions of
organ physiology and are increasing their resolution to the cell
level (arguably the right level to start understanding the origin of
most toxic injuries). Originating from two different research
communities (biochemists vs. physiologists) these two approaches
are slowly merging as they meet each other at the tissue level.
Furthermore, the two approaches did not escape the attention of
the members of the 21st century toxicology panel of the US
National Academy of Sciences, who placed them at the heart of
their vision statement (National Research Council (NRC), 2007),
gaining much attention, given the authority of its authors. The
ensuing consideration of toxicity pathways and modes of action
(MOA) met happily the adverse outcome pathway (AOP) thinking
in vogue in the ecotoxicology community (Tollefsen et al., 2014),
and is still hesitating about changing name . . . Meanwhile, virtual
organ programs have been heavily funded (e.g., by the Virtual Liver
project of the German Ministry of Research) (Holzhiitter et al.,
2012) given their potential impact for predictive drug safety
assessment. In short, we are witnessing a convergence of systems
biology and virtual organs modeling around the concept of
quantitative MOAs, fully amenable to QIVIVE and risk assessment.

This paper follows a bottom-up integration logic: A first section
presents our work at the organelle/cellular level. We then go
toward modeling cell levels effects (monitored continuously),
multiscale PBPK and effect models, and route to route extrapola-
tion. We end with a short presentation of the automated KNIME
workflows developed for dissemination and easy use of our
models.

2. From organelles to cells

Before manifesting themselves at the cellular level, most
toxicity effects start at the scale of organelles. Mitochondria in
particular are often targets of toxicity. They perform two critical
functions in the cell: the production of more than 90% of the cell’s
energy, and the control of cell survival as an integral part of
programmed cell death (apoptosis). Three general adverse effects

result from mitochondrial toxicity: 1. Disrupted energy metabo-
lism; 2. Increased free radical generation; and 3. Altered apoptosis.
We addressed the disruption of mitochondrial energy metabolism
by measuring and simulating mitochondrial membrane potential
(MMP). The measurement of MMP provides information on the
mitochondrion's ability to carry out oxidative phosphorylation
(which couples electron transfer to ATP synthesis), and transfer
ions and substrates across its inner membranes (Nicholls and
Ward, 2000). Thus, one of the most common methods to detect
mitochondrial toxicity is the monitoring of the cells' MMP. A
variety of fluorescent dyes can be used to that effect in high
throughput screening. For example, cationic dyes distribute to the
mitochondrial matrix in accordance with Nernst's equation
(Mitchell and Moyle, 1969), so that the MMP is given by:

MMP = (a x V)R Tlog<ccy[> (1)
F Cmit

where R is the gas constant, T the temperature, F the Faraday

constant, C the concentration of the chemical in the cell cytosol,

Cmie its concentration in mitochondria, @ a proportionality

constant, and V the cell viability. Cy,;; is computed by integration

of the following differential equation:

Cpi
artmt = Kmit(caq - Cmit) (2)

where Cyq is the concentration in the aqueous phase of the cell, and
Kpmie is a diffusion rate constant dependent on the chemical and cell
line used.

We report here results on the in vitro MMP disruption of
HepaRG cells by caffeine, carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone (FCCP), amiodarone and estragole. The MMP was
measured and modeled using an extension of the VCBA model
(Zaldivar et al., 2011, 2010). That model, like some others (Armitage
et al., 2014; Crean et al., 2014; Hamon et al., 2014; Pomponio et al.,
2014; Truisi et al., 2015; Wilmes et al., 2013) takes into account the
fate of the test compound in vitro: partitioning between plastic vial
walls, headspace, serum proteins and cells. It includes a model of
cell growth and death and has been linked to a threshold model for
cell killing. In the course of the COSMOS project, we developed
VCBA models for amiodarone, caffeine, FCCP, coumarin, estragole,
ethanol, and nicotine. To simulate MMP data, a mitochondrial sub
cellular compartment and Nernst’s equation were added to the
VCBA model. In vitro HepaRG MMP data were used to optimize two
parameters of Nernst's equation (a and K;) by least-square
minimization. Fig. 1 shows the measured and simulated MMP as a
function of the exposure concentration of the four chemicals
assayed. The model was able to correctly reproduce the
amiodarone and estragole data. The caffeine data show a peak
at 0.01 M, which could not be reproduced by the model. The FCCP
induced fast decrease of MMP at concentrations lower than 0.1 mM
was not well captured by the model either. More experiments with
different chemicals will be needed to fully understand the
determinants of prediction accuracy.

3. Modeling in vitro kinetics and continuously measured cell
effects

Two complementary models were used to analyze toxic effects
in vitro, at the cell level. The first model is the VCBA model
introduced above (Zaldivar et al., 2011, 2010). This model is well
suited to analyze fixed point cytotoxicity data (as in high-content
imaging assays). The second model can be used for continuous
cytotoxicity monitoring, using electrical impedance measure-
ments (Xing et al., 2006).

The latter model describes HepaRG cell viability loss following
exposure to hepatotoxic molecules. It was applied it to three
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