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Abstract

In this paper, we consider the use of an efficient null space algorithm for hydraulic analysis that employs preconditioned conjugate

gradient (PCG) methods for solving the Newton linear equations. Since large water network models are inherently badly condi-

tioned, a Jacobian regularization is employed to improve the condition number to some degree, this resulting in an inexact Newton

method whose analyses is presented. Based on this analysis, constraint preconditioners are used to improve the condition number

further for more efficient use of CG solvers. Operational networks are used to study the computational properties of the various

approaches.
c© 2015 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the Scientific Committee of CCWI 2015.

Keywords: Water distribution networks, hydraulic analysis, inexact Newton method, preconditioned conjugate gradient, null space algorithm

1. Introduction

The Newton method for hydraulic analysis has a Jacobian with a saddle point structure [1,2]. In the numerical

optimization literature, null space algorithms for saddle point problems have been used extensively, often called

reduced Hessian methods [2]. Null space algorithms, as opposed to the range space approach of GGA [3], have also

been applied for hydraulic analysis of water and gas pipe networks [1,4–6]. For a WDN with np number of pipes

(or links) and nn unknown-head nodes, the number nl = np − nn, which is the number of co-tree flows [6], is often

much smaller than nn. At each iteration, whereas the GGA method solves a linear problem of size nn, a null space

method solves an often much smaller problem of size nl but with the same symmetric positive definiteness properties.

Therefore, significant computational savings can be made for sparse network models. Moreover, GGA becomes

singular when one or more of the head losses vanish. Unlike the GGA approach, null space algorithms do not involve

inversion of headloss values. As such, they will not require processes to deal with zero flows so long as there are no

loops with all zero flows [1,2,6].

In this article, we analyze an efficient null space algorithm based Newton method for hydraulic analysis proposed

in [1]. By using sparse null space basis, we show that a significant fraction of the network pipes need not be involved

in the flow updates of the null space Newton method. Taking advantage of this, a partial update scheme is used to
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reduce the number of expensive computations in calculating head losses . Since the flow update equations of the null

space algorithm do not depend on pressure evaluations, computing pressure heads near convergence will reduce the

number of pressure head computations for further computational savings.

In this framework, the Newton steps are computed by solving linear equations projected in the much smaller

dimensional kernel space of the flow conservation constraints. The resulting linear equations are sparse, symmetric

and positive definite; therefore, sparse iterative methods are considered for solving them. However, these linear

systems are inherently very badly conditioned due to the large scale of variation in pipe loss characteristics and flows

when considering operational water network models. We consider the use of Jacobian regularization in the Newton

method [7] to keep the condition number low. We show that the resulting method will be an inexact Newton method;

we propose appropriate condition number bounds for the regularization that will not affect the convergence properties

of the Newton method. In addition, we propose and study different tailored constraint preconditioners for use with the

conjugate gradient (CG) method that will reduce the condition number further and enhance the rate of convergence of

the CG iterations. We demonstrate through case studies which preconditioners are most effective.

2. Problem Formulation

In demand-driven hydraulic analysis, the demand is assumed known, as opposed to pressure-driven simulations

where demands are written as functions of pressure [8] to be solved for. Once a WDN is defined by its connectivity,

and the characteristic of its pipes and the demands at each node, a steady-state solution of the system is computed by

solving the flow conservation and energy loss equations for a given demand. The objective is to compute the unknown

flows in each pipe and the pressures at the demand nodes. Let pipe p j have flow q j going from node i to node k, and

with pressure heads hi and hk at nodes i and k, respectively. The head loss across the pipe can then be represented as:

hi − hk = r j|q j|n−1q j, (1)

where r j, the resistance coefficient of the pipe, can be modelled as either independent of the flow or implicitly depen-

dent on flow qj and given as r j = αLj/(Cn
j D

m
j ). The variables Lj, Dj and C j denote the length, diameter and roughness

coefficient of pipe j, respectively. The triplet α, n and m depend on the energy loss model used; Hazen-Williams (HW:

r j = 10.670Lj/(C1.852
j D4.871

j )) and Darcy-Weisbach (DW) are two commonly used loss formulae [7]. In DW models,

the dependence of the resistance coefficient on flow is implicit; see the formulae in [9, (1–2)].

Given is a network with np links connecting nn(< np) unknown head nodes, and n0 known head nodes. We define

the vector of unknown flows and pressure heads as q = [q1, . . . , qnp ]T and h = [h1, . . . , hnn ]T .With head loss equations

defined for each pipe and the fixed heads and demands for each node taken into account, the set of nonlinear equations

that define the steady state flow conditions are given by the matrix equation [10, Eq. (1)]:

f (q, h) :=

Å
A11(q) A12

AT
12 0

ãÅ
q
h

ã
+

Å
A10h0

−d

ã
= 0 (2)

where the first and second block-row of equations represent the conservation of energy (pressure heads) and flow

continuity laws, respectively, h0 ∈ Rn0 and d ∈ Rnn represent the known heads (eg. at a reservoir or tank) and demands

at nodes, respectively. The matrix AT
12 ∈ R

nn×np is the incidence matrix for the nn unknown head nodes. The square

matrix A11 ∈ Rnp×np is a diagonal matrix with the elements

A11( j, j) = r j|q j|n j−1, j = 1, . . . , np, (3)

representing part of the loss formula in (1).

Most non-linear equations and unconstrained optimization problems are solved using Newton’s method [11,12].

The same Newton method has been applied to solve the hydraulic analysis problem, for the first time in [10], and

has been extensively used for the same purpose since then. By considering the Jacobian of f (q, h) with respect to the

unknown x := [q h]T , and using the head loss model for the ith link (3), the Newton iterations for the solution of (2)
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