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Abstract 

Composite laminates are currently being pursued for structures which may be subjected to explosive threats in aggressive 
environments, characterized by extreme temperatures and seawater. A mechanical model is formulated for laminated plates 
subjected to thermo-mechanical loading and deforming in cylindrical bending; the layers are assumed to be imperfectly bonded, 
with sliding interfaces and delaminations. The model derives dynamic equilibrium equations which depend on only three 
unknown displacement functions for arbitrary numbers of layers/interfaces. Close form solutions are obtained which highlight 
accuracy and limitations of the approach and the influence of the imperfect interfaces on stress and displacement fields.  
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1. Introduction 

Composite laminates are currently being pursued for structures which may be subjected to explosive threats in 
aggressive environments, characterized by the presence of extreme temperatures and seawater. Under such 
conditions the structural systems may exit the elastic regime and the response if then controlled by progressive inter- 
and intra-layer damage up to final failure. Temperature variations and moisture absorption generate strains and 
stresses which are controlled by the thermal/hygroscopic properties of the layers and their connections and by the 
stacking sequence; these stresses may affect the elastic/post-elastic behaviour of the structural systems. Modelling of 
composite systems in aggressive environments must then account for hygro-thermo-mechanical loading. 

The surfaces connecting adjacent layers in composite laminates and multi-layered systems, also known as 
interfaces, may be perfect, as in fully bonded systems, or imperfect, as in systems where the interfacial tractions are 
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continuous but relative displacements between the layers are allowed. Imperfect interfaces are typically described in 
the theoretical models by interfacial traction laws, which relate the interfacial tractions, normal ad tangential to the 
interfaces, to the relative displacements of the layers. Linear-elastic interfacial traction laws are used to describe thin 
elastic interlayers [1] or to approximate, in numerical solutions of the problems, perfect adhesion of the layers, in 
which case the interfacial tractions are described by very steep functions of the interfacial jumps [2,3]. More 
complex laws are used in the post-elastic regime to describe the different nonlinear mechanisms which take place at 
the interfaces and include material rupture, cohesive/bridging mechanisms acting along the wake of delaminations 
or ahead of their front and contact between delamination surfaces [4]. Nonlinear interfacial traction laws can be 
approximated by piece-wise linear functions and each piece of the laws is an affine function of the interfacial jumps.  

The displacement/stress fields in multilayered systems with imperfect interfaces are characterized by large 
variations, zigzag patterns and discontinuities. These fields are accurately predicted by recently developed theories, 
which derive a homogenized displacement field depending on a limited number of variables [5-7]. The theories 
corrects the models proposed in [1,8-10], which were energetically inconsistent. They extend the original models to 
describe affine interfacial traction laws, so setting up the bases for the solution of nonlinear problems. In this paper, 
the model formulated in [6] for plates deforming in  cylindrical bending is extended to account for thermo-
mechanical problems. Modified dynamic equilibrium equations are derived, which depend on the applied 
temperature field and the thermo-elastic constants of the material.  

2. Model 

A mechanical model has been formulated by the authors in [5] for laminated plates with imperfect interfaces 
characterized by affine interfacial traction laws and subjected to static and dynamic loading. The model has been 
particularized to plates deforming in cylindrical bending in [6]. The accuracy of the models has been verified 
through a comparison with exact 2D solutions [11,5,6]. Stresses and displacements are accurately predicted over the 
whole range of interfacial stiffnesses. The transverse displacements are underestimated in thick highly anisotropic 
plates with very compliant interfaces, as a consequence of the assumed interfacial conditions [5,6]; a modification of 
the shear factor is expected to resolve the problem (work in progress). Applications to plates with clamped edges [7] 
highlight the consistency/accuracy of the solution in the domain with the exception of boundary regions, near the 
clamped edges, where internal resultants, couples and global displacements are correctly predicted while 
inaccuracies are found in the local displacements and stresses in the layers. 

In this paper the formulation presented in [6] is extended to account for thermo-mechanical loading. The model 
refer to the schematic shown in Fig. (1), which depicts a plate of thickness h  and in-plane dimensions 1L  and 
2 =L L , with 1 2>>L L . A system of Cartesian coordinates, 1 2 3x x x− − , is introduced with the axis 3x  normal to 

the reference surface of the plate, which is arbitrarily chosen, and measured from it. The plate consists of  n layers 
joined by 1n −  interfaces. The layer k, where the index 1,..,k n=  is numbered from bottom to top, is defined by the 

coordinates 1
3
kx − and 3

kx  of its lower and upper interfaces, ( )k −S  and ( )k +S , and has thickness ( )k h , Fig. 1 (the k 
superscript in brackets identifies affiliation with layer k). Each layer is linearly elastic, homogeneous and orthotropic 
with material axes parallel to the geometrical axes. The displacement vector of an arbitrary point of the plate at the 
coordinate { }1 2 3, , Tx x x=x  is { }1 2 3, , Tv v v w= =v . 

The plate is subjected to distributed loads acting on the upper and lower surfaces, +S  and −S , and on the 
lateral bounding surface, B , and to thermal loads applied so as to satisfy plane strain conditions parallel to the 
plane 2 3x x− ;  the plate then deforms in cylindrical bending. In addition, the plate is assumed to be incompressible 
in the thickness direction and the interfaces to be rigid against mode I (opening) relative displacements. This latter 
assumption, which is often used in the literature, is rigorously correct only in problems where the conditions along 
the interfaces are purely mode II. The assumption, however, is acceptable in the presence of continuous interfaces, 
when the interfacial normal tractions are small compared to the tangential tractions and interfacial opening is 
prevented, e.g. by a through-thickness reinforcement or other means. Based on the assumptions above, the 
displacement components then simplify in 1 0v = , 2 2 2 3( , )v v x x=  and 3 2( )v w x= .   
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