ARTICLE IN PRESS

MEDICINA XXX (2018) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: http://www.elsevier.com/locate/medici

Review

Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies

Osasenaga Macdonald Ighodaro^{*a,b,**}, Abiola Mohammed Adeosun^{*a,b*}, Oluseyi Adeboye Akinloye^{*b*}

^a Department of Biochemistry, Faculty of Sciences, Lead City University, Ibadan, Nigeria ^b Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta (FUNAAB), Abeokuta, Nigeria

ARTICLE INFO

Article history: Received 14 September 2017 Accepted 8 February 2018 Available online xxx

Keywords: Alloxan Diabetes mellitus Diabetogenic agent Streptozotocin Animals

ABSTRACT

Glycemic homeostasis refers to glucose balance or control within circulation in living organisms. It is normally and largely compromised in diabetes. The compromise when exacerbated, leads to several complications including retinopathy, nephropathy and neuropathy which are collectively known as diabetic complications and are the principal actors in co-morbidity and eventual mortality often associated with diabetes. The ability of therapeutic compounds including medicinal plants to restore glycemic balance or homeostasis in hyperglycemic condition is an index of their antidiabetic function and relevance. Alloxan and streptozotocin are the most popular diabetogenic agents used for assessing the antidiabetic or hypoglycemic capacity of test compounds. Notably, alloxan is far less expensive and more readily available than streptozotocin. On this ground, one will logically expect a preference for use of alloxan in experimental diabetes studies. Surprisingly, a sub meta-analysis of randomly selected studies conducted within the last one and half decade revealed otherwise. This observation necessitated the review of alloxan as a diabetogenic agent in animal studies.

© 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Alloxan which is chemically known as 5,5-dihydroxyl pyrimidine-2,4,6-trione is an organic compound, a urea derivative, a carcinogen and cytotoxic glucose analog [1]. The compound has the molecular formulae, $C_4H_2N_2O_4$ and a relative molecular mass of 142.06. Alloxan is one of the common diabetogenic agents often used to assess the antidiabetic potential of both pure compounds and plant extracts in studies involving diabetes. Among the known diabetogenic agents which include dithizone, monosodium glutamate, gold thioglucose, high fructose load, high glucose load and anti-insulin serum; alloxan and streptozotocin (STZ) are the most widely used in diabetes studies. The current average cost of one gram of

MEDICINA

https://doi.org/10.1016/j.medici.2018.02.001

Please cite this article in press as: Ighodaro OM, et al. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (2018), https://doi.org/10.1016/j. medici.2018.02.001

^{*} Corresponding author at: Department of Biochemistry, Lead City University, Ibadan, Nigeria. E-mail addresses: Ighodaro.macdonald@lcu.edu.ng, macigho@gmail.com (O.M. Ighodaro).

¹⁰¹⁰⁻⁶⁶⁰X/© 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2

ARTICLE IN PRESS

MEDICINA XXX (2018) XXX-XXX

alloxan and STZ are respectively 1.5 and 200 US dollars respectively. Due to relative affordability and availability, one will logically expect that alloxan will be more used compared to STZ [2]. However, a literature survey and sub meta-analysis that we carried out on the use of both compounds in experimental diabetes studies conducted within the last one and half decade (2000–2016) suggested otherwise (Table 1). Analysis of the data obtained showed that 30.3% of the studies used alloxan while 57.9% made used of STZ as a diabetogenic agent, and others which used glucose, fructose and genetic diabetic mice constituted the remaining 11.8% (Table 1).

2. Alloxan-induced diabetes

Alloxan-induced diabetes is a form of insulin-dependent diabetes mellitus that occurs as a result of alloxan administration or injection to animals [78,79]. It has been successfully induced in a variety of animal species; rabbits, mice, rats, monkeys, cats and dogs [80,81]. Alloxan has been administered in single or multiple doses, through different routes (intraperitoneal, intravenous and subcutaneous); with single intraperitoneal administration apparently the most employed mode. The dosage of the drug also varies across studies, ranging between 90 and 200 mg/kg of body weight (BW), with 150 mg/ kg BW being the most frequently used dosage. Animal species, route of administration and nutritional status have been considered to play a role in determining the dose of alloxan appropriate for induction of diabetes [2]. However, single intraperitoneal administration of the drug at 170-200 mg/kg BW appears to be most effective [2].

Alloxan was first isolated by Brugnatelli in 1818 and initially described by Frederick Wohler and Justin Liebig in 1838 [83]. Alloxan causes diabetes by a mechanism which basically involves partial degradation of the beta (β) cells of pancreatic islets and subsequent compromise in the quality and quantity of insulin produced by these cells. Its use as a diabetogenic drug in experimental animals was first reported by Dunn and McLetchie in their study in which they successfully induced diabetes in experimental rabbits [78]. Thereafter, several authors have used alloxan-induced diabetes model as a "study tool" to elucidate the pathophysiology of the disease and much more as a "search engine" for antidiabetic compounds with better therapeutic characteristics.

The model employs two distinct pathological effects which include selective inhibition of glucose-stimulated insulin secretion, and induced formation of reactive oxygen species (ROS) which promotes selective necrosis of beta cells of the pancreas. Both effects collectively result in a pathophysiological state of insulin-dependent diabetes or type 1-like diabetes mellitus in cells [78,84]. The former is associated with specific inhibition of a pancreatic glucose sensor enzyme, glucokinase by alloxan whereas the latter is rather connected with the redox cycling ability of alloxan which results in ROS generation. More importantly, both effects have been linked to the chemical properties of alloxan as well as its structure.

2.1. Chemical features of alloxan and their contribution to its diabetogenicity

The diabetogenicity of alloxan is underlined by its selective cellular uptake by beta cells of the pancreas and consequent

Authors	Diabetogenic agent used	Authors	Diabetogenic agent used	Authors	Diabetogenic agent used
Kameswararao et al. [3]	Alloxan	Yadav et al. [28]	Fructose	Ighodaro et al. [53]	Alloxan
Pari and Saravanan [4]	Alloxan	Al-Azzawie and Alhamdani [29]	Alloxan	Nyomaan et al. [54]	STZ
Eidi et al. [5]	STZ	Verspoh et al. [30]	Glucose	Petchi et al. [55]	STZ
Maiti et al. [6]	STZ	Jaiswal et al. [31]	STZ	Akaladi et al. [56]	STZ
Gupta et al. [7]	STZ	Sunil et al. [32]	STZ	Olatunji et al. [57]	Fructose
Bagri et al. [8]	STZ	Jelodar et al. [33]	Alloxan	Daud et al. [58]	STZ
Tabuchi et al. [9]	STZ	Ighodaro et al. [34]	STZ	Cao et al. [59]	STZ
Ragavan and Krishnakumari [10]	Alloxan	Asgary et al. [35]	Alloxan	Saravanan et al. [60]	STZ
Dewanjee et al. [11]	Alloxan	Kumar et al. [36]	Alloxan	Hakkim et al. <mark>[61]</mark>	Alloxan
Yang et al. [12]	Alloxan	Venkatesh et al. [37]	Alloxan	Lee et al. [62]	STZ
Jala et al. [13]	Fructose	Paril et al. [38]	Alloxan	Poudyal et al. [63]	CHO/High fat
Jemai et al. [14]	Alloxan	Shanmugasundaram et al. [39]	Alloxan	Dzeufiet et al. [64]	STZ
Sridhar et al. [15]	STZ	Nugroho et al. [40]	Fructose	Anathan et al. [65]	Alloxan
Pandit et al. [16]	STZ	Jelastin et al. <mark>[41]</mark>	Alloxan	Miura et al. [66]	KK mice
Papato et al. [17]	STZ	Satheesh and Paril [42]	Alloxan	Oliveira et al. [67]	STZ
Zhang and Tan [18]	STZ	Wainstein et al. [43]	STZ	Singh et al. [68]	STZ
Sarkhail et al. [19]	STZ	Moon [44]	STZ	Bnouham et al. [69]	STZ
Habibuddin et al. [20]	STZ	Chung et al. [45]	STZ	Surana et al. [70]	Alloxan
Liu et al. [21]	STZ	Ahangarpour et al. [46]	Fructose	Anwar et al. [71]	STZ
Abdelmoaty et al. [22]	STZ	Prince et al. [47]	Alloxan	Ju et al. <mark>[72]</mark>	STZ
Oku et al. [23]	STZ	Abedinzade et al. [48]	STZ	Gandhi et al. [73]	STZ
Orhan et al. [24]	STZ	Kook et al. [49]	STZ	Shirwaikar et al. [74]	STZ
Ezquer et al. [25]	STZ	Kumar et al. [50]	STZ	Chen et al. [75]	STZ
Zhao et al. [26]	STZ	Shajeela et al. [51]	Alloxan	Djomeni et al. [76]	STZ
Singh et al. [27]	STZ	Sowmia and Kokilavani [52]	Alloxan	Veerapur et al. [77]	STZ

STZ, streptozotocin.

Please cite this article in press as: Ighodaro OM, et al. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (2018), https://doi.org/10.1016/j. medici.2018.02.001

Download English Version:

https://daneshyari.com/en/article/8585473

Download Persian Version:

https://daneshyari.com/article/8585473

Daneshyari.com