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a b s t r a c t

Imputation provides a useful method for mapping forest attributes across broad geographic areas based
on field plot measurements and Landsat multi-spectral data, but the resulting map products may be of
limited use without corresponding analyses of uncertainties in predictions. In the case of k-nearest neigh-
bor (kNN) imputation with k = 1, such as the Gradient Nearest Neighbor (GNN) approach, where the field
plot with the most similar spectral signature is attributed to a given pixel, there has been limited guid-
ance on methods of examining uncertainty. In this study, we use a bootstrapping method to assess the
uncertainty associated with the imputation process on predictions of live tree structure (canopy cover,
quadratic mean diameter, and aboveground biomass), dead tree structure (snag density and downed
wood volume), and community composition (proportion hardwood) for a portion of the Cascade
Mountains in Oregon, USA. We performed kNN with k = 1 imputation with 4000 bootstrap samples of
the field plot data and examined three metrics of uncertainty: the width of 95% interpercentile ranges
(IPR), the proportion of bootstrap samples with no tally (i.e., forest attribute was imputed as zero), and
the imputation deviations (i.e., mean prediction from the bootstrap sample minus baseline GNN predic-
tion [no bootstrapping]). Imputed values of dead tree components and species composition exhibited
greater IPR, proportion no tally near 0.5, and greater magnitudes of imputation deviations compared
to live tree components, indicating greater uncertainties. Our uncertainty metrics varied spatially with
respect to environmental gradients and the variation was not consistent among metrics. Geographic pat-
terns in prediction uncertainties implicated biogeography and disturbance as major factors influencing
regional variation in imputation uncertainty. Spatial patterns differed not only by forest attribute, but
by uncertainty metric, indicating that no single measure of uncertainty or forest structure provides a full
description of imputation performance. Users of imputed map products need to consider the pattern of
and the processes that contribute to uncertainty during the early stages of project development and
execution.

Published by Elsevier B.V.

1. Introduction

Mapping forest conditions and attributes based on imputation,
a method of substituting observed values to replace missing data,
is becoming increasingly common (e.g., Ohmann and Gregory,
2002; Tomppo et al., 2008; Wilson et al., 2013) and the utility of
the resulting map products in forest management and planning
is unknown without estimates of precision, or uncertainty, and
accuracy, or bias. While forest inventory programs, such as the
USDA Forest Service Forest Inventory and Analysis (FIA) program
(Bechtold and Patterson, 2005), provide consistent and extensive

sampling of forest conditions appropriate for design-based infer-
ence on large areas, their utility in supporting fine-scale decision
making (e.g., forest stand management) can be limited by the rel-
ative low density of plots (McRoberts and Tomppo, 2007;
McRoberts, 2008). For example, at base sampling intensity there
is one FIA plot for every 2428 ha of forest land (Bechtold and
Patterson, 2005). As a consequence of and in conjunction with
increasingly reliable remote sensing products, such as 30-m reso-
lution multi-spectral imagery across the multi-decade life of the
Landsat program (Williams et al., 2006; Loveland and Dwyer,
2012), there has been an increasing focus on statistical imputation
methods that can produce high-dimensional data products by cor-
relating ground observation of vegetation characteristics with
geospatial data products (e.g., Ohmann and Gregory, 2002;
Tomppo et al., 2008). While nearest neighbor imputation provides
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fine-scale predictions of a variety of vegetation characteristics val-
ued by forest managers, such as descriptions of species composi-
tion, live tree structure, and dead wood components, fine-scale
measures of uncertainties in mapped ecological predictions are
necessary for proper interpretation of results (Wiens et al., 2009).

In addition to traditional model validation and accuracy
assessments, where predictions are compared to independent
observations to assess a model’s ability to predict reality (e.g.,
Riemann et al., 2010; Wilson et al., 2012), assessing the variation,
or uncertainty, in predictions can be a powerful tool for under-
standing the limitations of statistical imputation and the resulting
maps of forest characteristics. Presenting uncertainties in predic-
tions, especially across extensive geographic areas, is a major chal-
lenge for the development of useful geospatial predictions (Wiens
et al., 2009). Assessing uncertainties can inform future research
(e.g., what data and/or processes need to be incorporated;
LeBauer et al., 2013) and help identify the limitations of predic-
tions for decision-making (e.g., in what areas are predictions most
variable; Beaudoin et al., 2014).

Nearest-neighbor techniques have emerged as useful methods
for spatial prediction of forest attributes as combinations of obser-
vations (e.g. field plots) that have similar characteristics in a space
of mapped auxiliary variables (often from remote sensing)
(McRoberts, 2012; McRoberts et al., 2010; Tomppo et al., 2008).
Nearest neighbor methods are appealing because they are multi-
variate and nonparametric, and can be used to map multiple forest
characteristics over large areas (Eskelson et al., 2009; McRoberts
et al., 2011). Nearest-neighbor techniques based on forest inven-
tory plots and satellite imagery were first implemented opera-
tionally in Finland in 1990, but have now been applied in
locations spanning the globe (McRoberts, 2012). Recent work on
k-nearest neighbor (kNN) techniques has provided valuable
insights into estimating prediction uncertainties for imputation
methods (McRoberts, 2006; McRoberts et al., 2011). kNN tech-
niques estimate the characteristics of an individual pixel or other
areal unit as a function of k observations most similar to the pixel
in question based on some set of auxiliary data, such as remote
sensing, climate, and soils. When the objective has been to esti-
mate the variance of a prediction, it is often assumed that kP 5
and that each neighbor contributes equally to the estimator to
allow for a relatively simple analytical solution (e.g.; McRoberts,
2006; McRoberts et al., 2007). Non-parametric methods of estimat-
ing uncertainties, such as bootstrap and jack-knife sampling, have
also been employed, both as a way to test the validity of the
assumptions used in the analytical solutions as well as estimating
forest attributes for management and research (Magnussen et al.,
2009, 2010; McRoberts et al., 2015).

While research into kNN variance estimation has received some
attention, very little has been done to examine imputation models
utilizing small values of k. In particular, k = 1 approaches are useful
tools for imputation as they, by definition, can only predict combi-
nations of forest attribute values at the pixel-scale that were
observed in the field (Ohmann and Gregory, 2002; Henderson
et al., 2014). As a result, unrealistic predictions for a 30-m pixel,
as might be expected when averaging many nearest neighbors
(i.e., large k), are avoided. While there have been attempts to assess
model accuracy at the plot- and aggregate-scale for k = 1 kNN
approaches (Pierce et al., 2009; Riemann et al., 2010; Ohmann
et al., 2014), uncertainty characterization for k = 1 methods at the
pixel level has received less attention (but see McRoberts et al.,
2011). When k is small, analytically derived variance estimators
are impractical, but non-parametric bootstrapping of the imputa-
tion process can provide a method for estimating variability
(McRoberts, 2012; McRoberts et al., 2015), such as the width of
inter-percentile ranges in bootstrap sample predictions. Bootstrap
samples can also be used to examine the likelihood that a forest

attribute is present (i.e., >0) by calculating the proportion of boot-
strap predictions where the variable of interest equals zero. Similar
to zero-truncated models for species abundances (Martin et al.,
2005), the quantification of the absence of certain forest attributes
provides a deeper understanding of the observed patterns. Finally,
the degree to which baseline imputed predictions using k = 1 (i.e.,
no bootstrapping) differ from the mean predictions based on boot-
strapped samples (hereafter referred to as imputation deviations)
can highlight the influence of extreme data points on prediction.
As a result, multifaceted exploration of imputation uncertainties
can provide a fuller picture of how the availability of reference plot
data modified through non-parametric bootstrapping (i.e., which
plots are selected in each bootstrap sample) impacts imputed
predictions.

Uncertainties in imputed map predictions arise from a variety
of sources. Input data may involve sampling error, due in part to
inaccuracies in measurements, such as omission of trees in inven-
tory plots or sensor drift for remotely sensed data. Spatial mis-
matches and scaling issues are common in geospatial data
analysis (Turner et al., 2004; Riemann et al., 2010; Zald et al.,
2014). Both of these sources of error could lead to substantial
uncertainties in imputed map predictions, especially at the pixel-
scale. Statistical models upon which imputation might be based,
as with canonical correspondence analysis (CCA; ter Braak, 1986)
in the Gradient Nearest Neighbor (GNN; Ohmann and Gregory,
2002) method, are simplifications of reality, contributing to predic-
tion uncertainty. The imputation algorithm assigns predictions to
individual pixels based on the model and some set of reference plot
data which is itself a sample of forest conditions and is thus an
incomplete representation of reality. These differing sources of
uncertainty can be manifested in poor predictive performance,
often explored through accuracy assessment. For the GNN
approach, accuracy assessments demonstrate good agreement
between predictions and observations in closed-canopy forests of
the Pacific Northwest, especially in the western Cascade Mountains
and Oregon Coast Range (Pierce et al., 2009). Even when imputa-
tion maps exhibit good accuracy, uncertainties can still manifest
themselves as low precision (i.e., high variability) of predictions.

In this paper, we use non-parametric bootstrapping to examine
uncertainties in forest attribute imputation for kNN with k = 1
methods, because (1) it has direct bearing on the development of
fine-scale imputed map products, and (2) focusing only on the con-
tribution of imputation to map uncertainties allows for a general
examination of uncertainties associated with kNN methods with
k = 1 rather than the CCA model underlying the GNN approach.
We use bootstrap sampling to explore the sensitivity of k = 1 near-
est neighbor predictions across 4978 km2 of forested land in the
western Cascade Mountains of Oregon, USA. Specifically, we use
one variant of kNN with k = 1, the GNN approach, for imputing for-
est attributes based on 30-m resolution environmental data,
including Landsat imagery. Because this implementation of the
GNN imputation method relies on data from Landsat imagery as
predictor variables, we expect that variability in estimation would
depend in part on how closely related a given variable was to the
overstory condition being observed by the satellites. For example,
since Landsat’s TM and ETM+ sensors observe exposed vegetation
most directly and do so at a 30-m pixel resolution (Lu, 2006), we
would expect live tree forest structure, such as canopy cover and
biomass, to be better predicted than dead wood, which can be less
abundant and often obscured from view by passive remote sensors.
In addition, rare components of the landscape and those strongly
influenced by stochastic events may be difficult to predict, such
as hardwood contributions to forest communities, because they
generally do not dominate in this region (Ohmann and Spies,
1998). Specifically, our objectives were (i) to characterize the
imputation uncertainty in predictions for six forest attributes
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