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a b s t r a c t

In this research application paper, the usefulness of the s-metaheuristic neighborhood search technique
of simulated annealing algorithm when applied to forest management planning problems was explored.
We concentrated on tactical forest spatial harvest scheduling problems where the net present value of
management activities over thirty 1-yr periods was to be maximized. Constraints mainly included those
related to the need for an even-flow of scheduled wood products and the need for spatial constraint
types, i.e., unit restriction model and area restriction model, respectively. Four hypothetical grid datasets
with different age class distributions (i.e., young, normal, older and spatially organized) and one real
dataset from northeastern China were used to illustrate how a 2-opt moves can intensify a search within
high-quality areas of a solution space and thus produce higher-valued solutions as compared to the sole
use of 1-opt moves. Finally, extreme value theory was employed to estimate the global optimum solution
and to evaluate the quality of the heuristic solutions. We found that the 2-opt technique not only pro-
duced consistently better solutions than the 1-opt technique in terms of the mean and maximum solu-
tions values, but also significantly decreased the standard deviations associated with the sets of solutions.
The maximum solution values were usually more than 98% of the estimated optimal values. The motiva-
tion for using a 2-opt technique is found in the generation of more efficient solutions that will allow a
forestry organization to produce higher returns to its owners.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Forest management plans are often developed to help process
conflicts that arise between a desired number of goods and services
in human society and to more specifically arrange the timing and
placement of forest management activities (Bettinger et al.,
2015). Societal values have changed recently, but for a long time
forest management plans only focused on timber production and
economic concerns in many countries around the world. Today
there is an increased awareness of the importance of landscape
pattern on the ecological functions of forests (e.g., wildlife habitat,
biodiversity, recreation, water conservation). These concerns
require new developments in forest planning, the problems of
which now usually involve spatial information. A few of the more
typical spatial restriction problems include controlling the

maximum or mean sizes of contiguous final harvest (clearcutting)
areas (McDill et al., 2002; Öhman and Lämås, 2003; Heinonen and
Pukkala, 2004; Martins et al., 2014), decreasing fragmentation of
forests (Borges and Hoganson, 2000; Öhman and Lämås, 2005),
or developing and maintaining habitat of concern for endangered
species (Tóth et al., 2008; Pukkala et al., 2012). Depending on the
methods used to describe these problems, the processes may
exceed the capability of traditional mathematical programming
techniques (e.g., mixed integer programming), because they may
need to be formulated as 0–1 mixed integer programming prob-
lems. Since solving these types of problems with traditional meth-
ods may be a formidable task, no one particular solution approach
has become universally acceptable (Murray and Church, 1995), and
research into traditional and metaheuristic methods continue to
progress forward.

Within the field of forestry, harvest adjacency and green-up
constraints have become the most commonly used constraint
types for spatial harvest scheduling (Shan et al., 2009). As
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Murray (1999) described, harvest adjacency constraints can be
described as two basic types: the unit restriction model (URM)
and area restriction model (ARM). In general, the URM prohibits
strictly the neighboring management units to be scheduled for a
final harvest during the same time period. However, the ARM
allows some limited neighboring units to be scheduled for a final
harvest during in the same time period, as long as the total final
harvest area does not exceed a user defined maximum size. Also,
the concept of green-up constraints was introduced in order to
guarantee a time buffer between the locations of two final harvest
areas. Temporal constraint can be used along with the URM and
ARM approaches (Boston and Bettinger, 2006; Zhu and Bettinger,
2008), yet can further complicate the development of the con-
straint set. Within the United States, the rules for adjacency and
green-up constraints vary between different states and regions.
The reasons for using adjacency and green-up constraints not only
include the need to adhere to regulations, but also to comply with
the guidelines of voluntary certification programs. For example,
the Sustainable Forestry Initiative requires the maximum average
clearcut areas must be less than 48 ha and the trees in adjacency
final harvest units cannot be cut for 3 yr or until the regenerated
trees reach an average height of 1.2 m (Sustainable Forestry
Initiative, 2015). However, at one point in time for the subalpine
region in Sweden, clearcut areas needed to be less than 20 ha
and adjacent units could not be scheduled for a final harvest for
15 yr (Dahlin and Sallnas, 1993). In assessing the impact of adja-
cency and green-up rules, Zhu and Bettinger (2008) suggested that
landowners with small-sized forests and young initial age class
distribution would be significantly more affected by potential adja-
cency and green-up constraints. Boston and Bettinger (2006) also
showed how certain rules can affect forest plan values. In sum-
mary, shortening the green-up period or increasing the assumed
maximum clearcut size may be beneficial economically, but may
also intensify the process of the fragmentation of landscapes or
habitat patches.

In recent research designed to examine methods for solving
spatial planning problems, two general methodologies are
explored: mathematical programming techniques and heuristic
algorithms (Shan et al., 2009). Mathematical programming tech-
niques include linear programming (e.g., Charles et al., 2007),
mixed integer programming (e.g., Tóth et al., 2012), goal program-
ming (e.g., Diaz-Balteiro and Romero, 2004), non-linear program-
ming (e.g., Miina et al., 2010) and dynamic programming (e.g.,
Borges et al., 1999; Yousefpour and Hanewinkel, 2009). Although
some mathematical programming approaches have been devel-
oped to address spatial problems encompassing a large number
of stands (e.g., Constantino et al., 2008; Goycoolea et al., 2009;
Tóth et al., 2013), there still may be insurmountable difficulties
in solving complex planning problems, such as the speed of opti-
mization time. Advances have been made recently to help improve
the computing time necessary to solve large forest planning prob-
lems through, for example, the strategic use of lazy constraints
(Tóth et al., 2013) the reduction in variables and use of cluster vari-
ables (Constantino et al., 2008), or the tightening of adjacency con-
straints through the use of clusters or cliques (Goycoolea et al.,
2009). However, these enhancements do not universally obviate
the notion that when the size of a problem increases, and the prop-
erties of the formulations can affect computing performance
(Goycoolea et al., 2009). Thus the process employed and the result-
ing high combinatorial nature may require a significant amount of
computing time. Therefore, large problems, problems with
non-linear relationships, or problems containing integer decision
variables may require the use of a heuristic technique.

Although well-developed heuristics can provide acceptable
solutions to complex problems within a reasonable amount of
time, rather than provide the optimal solution (Borges et al.,

2014), heuristics have been widely used in forest management
planning problems over the last two decades. The heuristics that
have been described for use in forest management and planning
include Monte Carlo integer programming (e.g., Boston and
Bettinger, 1999; Nelson and Brodie, 1990), simulated annealing
(e.g., Lockwood and Moore, 1993; Crowe and Nelson, 2005;
Gonzláez-Olabarria and Pukkala, 2011), tabu search (e.g.,
Richards and Gunn, 2003; Zeng et al., 2007), threshold accepting
(e.g., Calkin et al., 2002; Heinonen and Kurttila, 2007) and genetic
algorithms (e.g., Lu and Eriksson, 2000; Falcão and Borges, 2001).
Simulated annealing and threshold accepting are considered
s-metaheuristics (improvement of one solution), while genetic
algorithms are considered p-metaheuristics (use of a population
of solutions). These methods differ in their mechanisms employed
to prevent the search process from becoming trapped in local
optima. Comparisons of the quality of results generated by heuris-
tic methods have been described previously. For example, Boston
and Bettinger (1999) compared the performance of three methods
for addressing spatial harvest scheduling problems, while
Bettinger et al. (2002) compared the performance of eight methods
for addressing increasingly difficult wildlife planning problems.
Pukkala and Kurttila (2005) compared the performance of six
methods applied to five different forest planning problems.

As was suggested, two of the heuristics mentioned above
belong to a set of local improvement methods (s-metaheuristics).
A typical process employed during each iteration of these models
involves an attempt to improve a solution by changing the harvest
period or management prescription for one unit. This process is
usually considered a 1-opt move. If changes in harvest periods or
management regimes are made simultaneously to n units, then
we consider this an n-opt move process. For forest management
problems, n-opt moves, especially 2-opt moves, have recently been
explored, and typically a higher value of n may lead to better objec-
tive function values (e.g., Heinonen and Pukkala, 2004). The reason
is that if the planning problem contains strict constraints or tight
achievement targets for non-spatial goals, the tendency of getting
trapped in local optima may severely hinder the attainment of bet-
ter objective function values. It may also be the case that once the
solution process has reached the border of the feasible region of a
non-spatial goal, most 1-opt moves may be either non-feasible or
clearly poorer in value than the current solution. Comparison the
effects of different moves of heuristic have been described previ-
ously as well. For example, Bettinger et al. (2002) and Heinonen
and Pukkala (2004) reported that 2-opt moves can significantly
improve the quality of solutions for smaller problem instances
when compared to 1-opt moves, however Bachmatiuk et al.
(2015) reported that when the combinatorial problem is very large,
changing simultaneously the treatment schedule in more than one
stand does not improve the performance of simulated annealing.
However, the employment of 2-opt moves in Bachmatiuk et al.
(2015) is different than what was reported in Bettinger et al.
(2002), where instead of exchanging the treatment scheduled to
two stands (as in Bettinger et al. (2002)), the treatment schedules
for two stands are simply simultaneously and randomly changed
(i.e., not exchanged). We are therefore expanding on the work of
Bachmatiuk et al. (2015) to further explore this alternative
approach to the use of 2-opt moves.

The objective and contribution of this paper is to systematically
assess the performance of different neighborhood search tech-
niques (1-opt and 2-opt) of a simulated annealing algorithm in
solving forest spatial harvest scheduling problems. The objective
function was to maximize the net present value of activities over
thirty 1-yr periods less a penalty for not achieving the volume
goals. The planning problem is also subject to non-spatial, URM
and ARM constraints respectively. Four hypothetical grid datasets
and one real dataset were used to illustrate how a 2-opt move
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