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Available online xxxx Purpose: To define the incidence of healthcare-associated ventriculitis and meningitis (HAVM) in the neuro-ICU
and to identify HAVM risk factors using tree-based machine learning (ML) algorithms.
Methods: An observational cohort study was conducted in Russia from 2010 to 2017, and included high-risk
neuro-ICU patients. We utilized relative risk analysis, regressions, and ML to identify factors associated with
HAVM development.
Results: 2286 patients of all ages were included, 216 of them had HAVM. The cumulative incidence of HAVMwas
9.45% [95% CI 8.25–10.65]. The incidence of EVD-associated HAVMwas 17.2 per 1000 EVD-days or 4.3% [95% CI
3.47–5.13] per 100 patients. Combining all three methods, we selected four important factors contributing to
HAVM development: EVD, craniotomy, superficial surgical site infections after neurosurgery, and CSF leakage.
The ML models performed better than regressions.
Conclusion:We first reported HAVM incidence in a neuro-ICU in Russia. We showed that tree-based ML is an ef-
fective approach to study risk factors because it enables the identification of nonlinear interaction across factors.
We suggest that the number of found risk factors and the duration of their presence in patients should be reduced
to prevent HAVM.

© 2018 Elsevier Inc. All rights reserved.

Keywords:
Meningitis
Bacterial
Risk factors
Cross infection
Machine learning
Intensive care unit
Infection control

1. Introduction

Healthcare-associated ventriculitis and meningitis (HAVM) may
take place in association with invasive neurosurgical procedures
(post-neurosurgical meningitis), penetrating head trauma (post-trau-
matic meningitis), or miscellaneous causes on occasion [1]. HAVM sig-
nificantly impairs patient outcomes, enhancing morbidity and
mortality [2]. The development of post-neurosurgical meningitis can

increase mortality rate approximately 3 times (13.7% vs. 4.7%) com-
pared to non-meningitis neurosurgical patients [3]. Moreover, HAVM
increases the cost of care. In 2014, Schweizer et al. [4] showed in a
large study (N50,000 analyzed operations) a 1.93-fold increase
($23,755 more per case) of attributable health care expenditures to pa-
tients with post-neurosurgical meningitis compared to those without
infections after neurosurgery. For effectiveHAVMprevention it is neces-
sary to have reliable data regardingHAVM incidence in different patient
cohorts, and learn associated risk factors.

We assigned three primary objectives to this study: (1) to determine
the incidence of HAVM in the high-risk population, i.e. patients who
stayed in the neuro-ICU for N48 h, (2) to compare HAVM incidence in
patients who were exposed to different risk factors during their stay
in the ICU and assess relative risk (RR) for each of the factors, and (3)
to identify and range HAVM risk factors using regression and machine
learning (ML) approaches. We hypothesized that during patients' stay
in the ICU a few independent factors would emerge over time, increas-
ing the probability of HAVM development.

The first objective includes the study of HAVM incidence that is usu-
ally analyzed depending on risk factors or diagnosis. In the literature,
the cumulative incidence of post-neurosurgical meningitis varies
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dramatically. While one study demonstrated 0.3% HAVM incidence in
1587 neurosurgical cases [5], another study found 8.6% incidence in
755 pediatric patients after neurosurgery [6]. The incidence of post-
traumatic meningitis also varies and depends on trauma features. One
study recently reported this rate as 3.1% for all types of brain trauma
[7]. Nationwide statistics for HAVM cases in Russia are not publicly
available. According to a 2016 state report, 24771 cases of healthcare-
associated infections (HAIs) were registered throughout Russia (includ-
ing 5623 cases of surgical site infections) without distinguishing which
were HAVM [8]. The goal of our study is to fill this gap.

Studying of HAVM incidence is particularly relevant for high-risk ICU
patients because the admission to the ICU independently increases the
risk of HAIs, according to a 2002 report of the U.S. Centers for Disease
Control (CDC) [9]. Approximately 25% of all nosocomial infections in
the U.S. occurred among adults and children in ICUs [9] despite the
fact that ICU beds account for just 8.5% of all hospital beds [10].

The second and third objectives include HAVM risk factors analysis.
To date, several different factors have been suggested as possibly in-
creasing the incidence of HAVM. While some of them are well-
established, other factors are less certain, and many detected associa-
tions are controversial and are not well-supported by data. The craniot-
omy has been considered to be themain risk factor of HAVM since 1977
[11]. Additionally, invasive devices, e.g. external ventricular drains
(EVD), shunts, external lumbar catheters have been shown to increase
the rate of HAVM inmultiple studies [1,12-14]. The role of other risk fac-
tors, including bedside ICPM, reoperation, the duration of neurosurgery,
tracheal intubation, central line, and infectious complications of other
localizations remains controversial [1,3,5,6].

Typically, researchers use statistical regression models to select dis-
ease risk factors [3,6,12,15,16]. However, it has been argued that regres-
sionmodels are not an optimal approach for such a complex problem as
HAIs, where nonlinearity can be broadly presented [17]. In addition, lin-
earmodels havemany disadvantages, including sensitivity to data noise
and multicollinearity, that can yield misleading conclusions [18]. Thus,
the methods used to assess risk factors need to be improved in order
to increase reliability and accuracy of the results and prevent HAVM
as a final goal.

If we generalize the task of risk factor identification, we come to the
well-known data science problem of feature importance ranking [19], a
problem that is effectively solved by usingML [19]. We selected the de-
cision tree-based ML algorithms for the study purpose because they are
highly effective in feature selection and in dealing with nonlinearity.
Specifically, we applied Random Forest (RF) classifier and Extreme Gra-
dient Boosting classifier (XGBoost) to our data set. XGBoost is one of the
most successful ML techniques, because it is computationally efficient,
scalable, and prevents over-fitting. For instance, feature ranking was
successfully performed by using XGBoost in e-commerce, facilitating a
reduction in the number of features four times without performance
quality loss [20]; the general taskwas very similar to ours. Inmedical re-
search, XGBoost is getting more popular for solving binary classifica-
tions combined with feature selection [18,22,23]. For example, this
approach identified atypical language fMRI patterns in patients with ep-
ilepsy and accurately (ROC-AUC= 0.91) distinguished between people
with and without disease [21]. The ML algorithms have several advan-
tages over regressionmodels. Particularly important advantages offered
by ML include robustness to highly correlated features and noise and
the ability to retrieve nonlinear interactions across features and deal
with imbalanced data. Moreover, no normalization is needed and fine-
tuningparameters can reduce the impact of class imbalance in a training
set without rebalancing data.

For the abovementioned reasons, the usage ofML algorithms for the
selection of disease-associated risk factors is likely to grow in the future.
To the best of our knowledge, no studies using tree-basedML to identify
HAVM risk factors have been performed. Herein we proposed XGBoost-
based ML algorithm for HAVM risk factors learning in comparison with
regression models and RR analysis.

2. Materials and methods

2.1. Study setting and design

This study is a prospective observational single-center cohort study
performed in the neuro-ICU at Burdenko Neurosurgery Institute (NSI)
in Moscow, Russia. The NSI ICU has 38 single-bed rooms for patients
with neurosurgical diseases and cares for approximately 3000 patients
per year. In 2010, the program of infection prevention and control was
implemented in the ICU. The study analyzed the data collected within
this program. We compared two groups of patients, with and without
HAVM. Both groups were selected from the high-risk patients' popula-
tion (see next section).

2.2. Patients and diagnoses

The study lasted for 80months, from October 1st, 2010 to June 30th,
2017. Only patients who stayed in the ICU for N48 h were eligible. We
considered these patients to be a high-risk population and accordingly
limited the study to this group only. The exclusion criteria included in-
fections presenting on admission (according to the CDC/NHSN defini-
tion [24]) and the duration of ICU stay longer than 1000 days. All
qualified patients regardless their age, conditions, disease, etc., were en-
rolled and participated in the study until discharge or death. Partici-
pants were enrolled starting their third to sixth day in the ICU.

HAVMwas defined clinically based on the presence of at least three
out of eight criteria: (1) CSF glucose level below 2.2 mmol/l or below
50% of plasma glucose in hyperglycemic patients, (2) CSF neutrophils
count above 50/μl, (3) CSF protein above 220 mg/dl, (4) CSF lactate
above 4.0 mmol/l, (5) positive CSF culture, (6) visualization of bacteria
in CSF by Gram staining, (7) SIRS syndrome, (8) negative neurological
dynamics. Infection was defined as healthcare-associated if it met the
CDC criteria [24]. The case of HAVM was considered to be a factor-re-
lated if the patient had the factor (e.g. EVD, ICPM, etc.) for N48 h prior
to the development of HAVM, otherwise it was deemed factor-unre-
lated. At the end of study, we revised HAVM cases for compliance
with diagnostic criteria and confirmed them retrospectively.

Due to the open nature of the study, patients were enrolled and then
left the study at different points in time. The therapeutic approach and
the ICU team remained constant throughout the study. In the follow-
up period (after the patient's discharge from the ICU and until the dis-
charge from the hospital) the information regarding the total length of
stay and the outcome was collected.

2.3. Data collection and preprocessing

Weprospectively collected 54 parameters for each patient, including
demographics, exposure to risk factors, infections, etc. (Table 1 Supple-
mentary). The Charlson Comorbidity Index (CCI) value [25] on admis-
sion was used to assess the severity of pre-existing conditions. The
data were anonymized and stored electronically as a part of NSI's health
record system.

For data preprocessing we first inspected data for missing or out-of-
range values. We found some occasional missing values and filled them
in after retrieving the information from the health record system. If
there was no information available in the system, the group mean was
substituted for themissing value. Thenwe expanded the number of var-
iables by generating 175 new clinically relevant aggregation features,
and composed a new analytical dataset (available at https://doi.org/
10.5281/zenodo.1021503).

2.4. Statistical analysis

Statistical analysis was performed in Python 3.6 using StatsModels
[26], SciPy Scientific Tools [27], and scikit-learn [28]. Qualitative vari-
ables for dichotomous events are reported as number of events of one
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