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The increasing number of model types that are used to predict tree biomass from diameter, height and
wood density has brought questioning about the biological relevance of complex allometries (i.e.
non-power models). Statistical issues such as collinearity among predictors and unreliable coefficient
estimates have also been associated with complex allometric models. Using a data set of 225 trees from
central Africa, we assessed the relevance of simple allometry (i.e. power model) versus complex allom-
etry to predict tree biomass. A complex allometric model of biomass was developed based on a model

ﬁl{) Vr‘g’gfs" of resource partition between dbh and height growths. Although being a good model for biomass predic-
Carbon Elllocation tion, the power model was outperformed by the complex allometric model. A careful examination
Power model showed that the power model could be segmented into two pieces of power models. Using tree diameter

and height as separated predictors improved the biomass prediction, irrespective of the collinearity
between these two predictors. A critical value of 25% for the PRSE statistic used to assess the reliability
of coefficient estimates corresponded to a significance level of 10°~10* and was thus unreasonably low.
We conclude that growth theories should be developed to explain allometric models, but that the
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arbitration between these models should ultimately rely on observed data, not on theories.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the current interest in forest carbon stocks to mitigate
greenhouse gas emissions, emphasis has been put on the statistical
tools to estimate tree aboveground biomass (Eggleston et al.,
2006). Among these tools are allometric equations i.e., in this con-
text, mathematical models to predict the biomass of a tree from
dendrometrical variables that are easier to measure and
non-destructive, such as diameter at breast height (dbh), height,
or wood density. The term ‘allometry’ was coined by Huxley and
Teissier (1936) “to denote growth of a part at a different rate from
that of body as a whole”. Because body size results from the tem-
poral integration of its growth, this definition of allometry also
implies relationships between body sizes, such as biomass, dbh
and height for a tree. However, because many different model
forms have been proposed for tree biomass equations, there is
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concern that the common understanding of allometry in the IPCC
guidelines departs from its original definition (Sileshi, 2014).

More specifically, Sileshi (2014) argued that “biologically
implausible (...) equations have been published as allometric
models”, where plausible models in his argument referred to
power models based on a single predictor. Power models have
played a central role in allometry because many growth data
empirically turned out to align along a straight line when plotted
in log-log scales (Stevens, 2009). However, to quote Gould
(1966), “allometry is not confined to any form of mathematical
expression, such as a power function”. In their seminal definition
of allometry, Huxley and Teissier (1936) considered power models
as a particular case of allometry that they called simple allometry.
In contrast to this simple allometry, complex allometries that do
not conform to the power model have also been developed
(Nijhout and Wheeler, 1996; Bernacchi et al., 2000). Because com-
plex allometric data do not exactly align along a straight line in
log-log plots, complex allometry is also called curvilinear
allometry.

A pending question then is whether tree biomass rather con-
form to simple allometry or to complex allometry (Temesgen
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et al.,, 2015). This question may be investigated empirically by
assessing whether non-power models provide a better fit to data
than power models. More importantly, growth theories may be
developed to support one type of allometric models and be con-
fronted to data. Because power models suppose a constant scaling
across the whole ontogenic development of the individual, theories
supporting simple allometry are mainly fractal-based. The
self-similarity that is the basis of fractals solves the dimensional
issues associated with the normalization coefficient of the power
model (White and Gould, 1965). Nevertheless, the scaling is more
likely to be constant only across a finite range of size such as dbh or
height (Antin et al., 2013; Temesgen et al., 2015). Because many
non-power models can bring nearly constant scaling across a wide
range of scale, simple allometry may be confused with complex
allometry.

Sileshi (2014) also argued that “statistically dubious equations
(...) have been published as allometric models” and highlighted
purported common statistical issues, such as collinearity among
predictors and unreliable coefficient estimates (as measured by
the PRSE statistic). These statistical considerations led the author
to conclude that simple allometric models based on a single pre-
dictor (typically, dbh) should be preferred to models with several
non-independent predictors (such as dbh and height). On the other
hand, a growing body of literature highlighted the importance of
height-diameter ratios as critical determinants of biomass, both
for biomass prediction and for designing sampling strategies of
biomass (Temesgen et al., 2011, 2015; Poudel et al., 2015).

Using a compilation of data sets on tree biomass in moist
African forests, this study aims at revisiting the question of the
form of biomass allometric equations and at addressing the follow-
ing questions: (1) Based on observed data, does tree biomass rather
conforms to simple allometry (i.e. power model) or to complex
allometry (i.e. non-power model)? (2) Does simple allometry hold
across the whole range of tree size, or can it be segmented into dif-
ferent allometries depending on the size range? (3) Should height
be included as a predictor of biomass, in combination with dbh (i.e.
using a combined predictor such as square dbh times height) or as
a separate predictor? A complex allometric model of biomass was
specifically developed in this study based on dbh and height
growths. A simple rule of resource partition between dbh and
height growths allowed us to derive a non-power model that clo-
sely approximates a power model on a wide range of tree size.
Although the current study focuses on tree biomass, its approach
readily extends to other tree attributes concerned by allometry,
such as tree volume or nutrient content.

2. Materials and methods
2.1. Models

2.1.1. Power models or simple allometry

By definition, power models correspond to a relationship
between two quantities where one quantity varies as a power of
another. Considering that biomass B divided by the specific wood
density p varies as a power of dbh D, one obtains for example
the power model:

B=apD’ (1)

where a and b are parameters. Wood density p in (1) accounts for
species differences. When monitoring a single tree across its onto-
genic development, p is not separable from the a parameter and
(1) then boils down to a power relationship between B and D.
Both power models are equivalent with a proportional relationship
between the biomass relative growth and the diameter relative
growth: (dB/B) = b(dD/D). Without further biological theory

explaining this proportionality in relative growth rates, and in par-
ticular when this proportionality relationship is empirically derived
from data, there is no more biological plausibility in this model than
in any other model empirically derived from data. However, some
theories are able to derive this power model from lower-level
assumptions, such as the metabolic scaling theory (West et al.,
1997). This theory is fractal-based, and thus predicts a scaling coef-
ficient b that remains constant along the whole ontogenic develop-
ment of the plant.

Power models can be reparameterized using the
log-transformation. For instance, the power model (1) is trivially
equivalent with In(B) =a +In(p) +bln(D) where a = In(a).
Re-parameterization is common practice in modelling and is even
sometimes a necessity when original parameters are not identifi-
able and, contrary to Sileshi (2014), we argue that there is no mis-
take in doing it. Unlike Sileshi’s (2014 ) statement, extensions of the
one-entry power model (1) that include other predictors can also
be given biological interpretations. For instance, the two-entries
power model:

B = apD°H* 2)

where H is tree height and c another parameter, corresponds to a bio-
mass relative growth rate that is a linear combination of the diameter
and height relative growth rates: (dB/B) = b(dD/D)+ c(dH/H).
Another example is the second order polynomial on
log-transformed variables: In(B) = @ + In(p) + b(InD) + c(In D)>.
Provided that ¢ < 0, which is a natural assumption to ensure that bio-
mass does not increase to infinity, this latter model is equivalent
after back-transformation with the log-normal model that has been
used to model tree growth (e.g. Uriarte et al., 2004; EngoneObiang
et al., 2013):

1, (K\]?
B = Bnax €Xp { {? In <5)} }
where Bnax = p expla’ — b®/(4c)] (in the same unit as B) is the max-
imum biomass that an individual can reach, K = exp[—b/(2c)] (in
the same unit as D) is the diameter where biomass reaches its max-

imum and Y = 1//—c (dimensionless) is a shape parameter that
determines the breadth of the biomass function.

2.1.2. Geometric models

Geometric models follow from the fact that biomass is wood
density times volume, and that tree volume can be assimilated to
simple geometric shapes. For instance, assuming that total above-
ground biomass is proportional to stem biomass (which is the
rationale behind biomass expansion factors) and that stem volume
is a cone leads to:

B=apD*H (3)

For instance, Chave et al. (2005) found a model of this type as
being the most suitable for tropical moist forest stands. Contrary
to the power model B = apD”H® where b and c are free parameters
that can take any value, the exponents of D and H in geometric
models are fixed. This difference is fundamental as it solves the
dimensional issue of the a coefficient in power models.

Replacing measured tree height with a prediction of a height
model based on dbh brings biomass equations that depend on
dbh and wood density only. A common model for height is the
Mitscherlich model (Banin et al., 2012; Kearsley et al., 2013):

H = o — exp(—yD) (4)
Integrating the Mitscherlich equation into (3) gives:

B =o' x pD?[1 — § exp(~yD)] (5)
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