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Studying how diverse human populations are related is of

historical and anthropological interest, in addition to providing a

realistic null model for testing for signatures of natural selection

or disease associations. Furthermore, understanding the

demographic histories of other species is playing an

increasingly important role in conservation genetics. A number

of statistical methods have been developed to infer population

demographic histories using whole-genome sequence data,

with recent advances focusing on allowing for more flexible

modeling choices, scaling to larger data sets, and increasing

statistical power. Here we review coalescent hidden Markov

models, a powerful class of population genetic inference

methods that can utilize linkage disequilibrium information

effectively. We highlight recent advances, give advice for

practitioners, point out potential pitfalls, and present possible

future research directions.
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Introduction
Using genetic data to understand the history of a popula-

tion has been a long-standing goal of population genetics

[1], and the emergence of massive data sets with individ-

uals from many populations [2,3,4��], often including

ancient samples [5], have enabled the inference of

increasingly realistic models of the genetic history of

human populations [6–8]. The progress in other species

is no less impressive, with demographic models inferred

for dogs [9], horses, [10], pigs [11], and many others.

These demographic models are frequently of interest in

their own right for historical or anthropological reasons,

and failing to account for demographic history when

performing tests of neutrality [12], disease associations,

[13], or recombination rate inference [14,15] can lead to

spurious results. Demographic models also play an impor-

tant role in conservation genetics, informing breeding

strategies for maintaining genetic diversity in endangered

populations [16].

Yet, inferring complex demographic models — often

including multiple populations with continuous migra-

tion, admixture events, and changes in effective popula-

tion size — is challenging both statistically and computa-

tionally, and numerous methods have been developed to

address this problem. Even under neutral evolution,

computing the likelihood of observing a set of genotypes

given a demographic model is computationally and ana-

lytically intractable. Hence, demographic inference

methods must make simplifying approximations and

generally fall into three classes: those based on allele

frequencies; those based on identity-by-descent (IBD) or

identity-by-state (IBS); and coalescent hidden Markov

models (coalescent-HMMs).

Allele frequency-based methods use the multipopulation

sample frequency spectrum (SFS) to infer either paramet-

ric [17–19,20�,21�] or non-parametric [22] models. For

computational purposes, these methods assume that all

loci are independent, an assumption violated by physi-

cally-linked loci, and thus ignore the rich information

contained in such linkage (although [23] relaxes this to

allow pairwise dependencies). Yet, these methods are

very fast, with recent methods scaling to data sets with

hundreds of individuals from tens of populations [21�],
making them ideal for quickly exploring many potential

models (e.g. testing models with different number of

admixture events). Nevertheless, there are concerns

about statistical identifiability ([24], but see [25]), power

[26,27�], and stability [28].

IBD-based and IBS-based methods use patterns of pair-

wise haplotype sharing to infer demographic models,

matching the distribution of observed IBD or IBS tract
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lengths to the distribution expected under the inferred

demographic model. While IBD-based methods, such as

[29–31], can be powerful — especially for learning about

the recent past — they rely on having access to unob-

served IBD tracts. Many methods have been developed

for inferring IBD tracts [32,33], but these rely either

explicitly or implicitly on the unknown demographic

history of the samples, resulting in a chicken/egg prob-

lem. The effect of these assumptions on IBD-based

methods has not been thoroughly explored, although

see [34]. To sidestep this issue, [35] works directly with

IBS tracts, a promising direction for further methodologi-

cal development.

The focus of this review is the final class of methods:

coalescent-HMMs. Below, we provide a historical over-

view of coalescent-HMMs; explore recent advances; dis-

cuss caveats, pitfalls, and best practices for applying

coalescent-HMMs to data; and conclude with open pro-

blems and promising future research directions.

A brief history of coalescent-HMMs
Coalescent-HMMs can trace back to the seminal work of

Wiuf and Hein [36]. The coalescent — a stochastic model

of the genealogy of a sample of homologous chromo-

somes — was first developed for a single non-recombin-

ing locus [37] and then extended to incorporate recombi-

nation [38]. The coalescent had been thought of as a

process through time, but Wiuf and Hein [36] formulated

it as a process along the genome. This sequential coales-

cent is very complex and non-Markovian (the genealogy

at a locus depends on the genealogies at all previous loci),

but simple, yet highly accurate, Markovian approxima-

tions were subsequently proposed (the sequentially Mar-
kovian coalescent; SMC) [39–42].

Under the SMC, observed sequence data are modelled in

a hidden Markov model (HMM) [43] framework by

treating the genealogy of the sampled individuals at a

given locus as an unobserved, latent variable. Because the

demographic model impacts the distribution of genealo-

gies (e.g. without migration, samples from different popu-

lations cannot have a common ancestor more recent than

the divergence of those populations) and the observed

sequence data are directly dependent on the underlying

genealogy, coalescent-HMM methods can be extremely

powerful. Furthermore, the HMM framework integrates

over all possible genealogies when inferring demographic

models — even if there is substantial uncertainty about

the genealogy of a given sample, the set of genealogies

likely to have given rise to that sample is still informative

about its demographic history.

In principle, the HMM framework enables efficient

inference of demographic parameters, but there are a

number of complications. First, except for rare special

cases (e.g. Kalman Filters [44] and iHMMs [45]), HMM

algorithms require a finite state space for the latent

variables; this is problematic in the coalescent-HMM

case since the branch lengths of the genealogy at a given

locus are continuous and can take an uncountably infinite

number of values. All coalescent-HMMs avoid this issue

by discretizing time. Having a finite state space is not

sufficient for efficient inference, however, as the number

of tree topologies grows super-exponentially in the sam-

ple size, making the full coalescent-HMM impractical for

all but the smallest sample sizes. The menagerie of

coalescent-HMM methods then arises by making differ-

ent approximations to this idealized coalescent-HMM:

instead of tracking the entire genealogy of the sample as a

latent variable, these methods only track some features or

subset of the genealogy.

Briefly, CoalHMM [46,47], developed to study different

species, tracks only the topology of the genealogy and in

which branch of the species tree the lineages coalesce.

CoalHMM cannot scale to more than a few species.

PSMC [48] can only be applied to a pair of haplotypes,

but tracks their genealogy exactly, up to the discretization

of time. MSMC [49] can use more than two haplotypes,

but only tracks the time to the first coalescence event and

the individuals involved in it. The first version of diCal

[50], inspired by the copying model of [51] and subse-

quent work on conditional sampling distributions (CSDs)

[52,53], considers a particular haplotype and tracks when

and with which other haplotype it first coalesces. PSMC

makes the fewest simplifying assumptions, but as it can

only be applied to two haplotypes it is less powerful than

MSMC or diCal, especially in the recent past.

Furthermore, these methods differ in the types of demo-

graphic models they can infer. PSMC, MSMC, and diCal

v1 all infer piece-wise constant population size histories

for a single panmictic population. CoalHMM and MSMC

are capable of making inferences about multiple popula-

tions: CoalHMM fits simple parametric models, and

MSMC performs non-parametric inference, reporting

‘cross-coalescence rate’ curves (CCRs). While CCRs have

been interpreted in terms of divergence times [4��,49], an

exploration of what models give rise to a particular CCR

has not been performed: if the goal of a study is to fit a

particular demographic model (e.g. a two population

isolation migration model), CCR curves can be a useful

diagnostic, but are difficult to interpret and cannot replace

parametric model fitting. All of the coalescent-HMMs

discussed here are summarized visually in Figure 1.

Recent advances
In response to the aforementioned shortcomings, there

has been much progress in coalescent-HMM methodol-

ogy. In particular, diCal version 2 allows for the paramet-

ric inference of more complex demographic models

involving multiple populations, and SMC++ and ASMC

push the boundaries of scalability for coalescent-HMMs.
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