Accepted Manuscript

Title: Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of Ecto-nucleotide pyrophosphatase phosphodiesterase-1

Author: J.M Kasper A.J Milton A.E Smith F. Laezza G.

Taglialatela J.D Hommel N. Abate

PII: \$0736-5748(16)30370-7

DOI: http://dx.doi.org/doi:10.1016/j.ijdevneu.2017.03.011

Reference: DN 2181

To appear in: Int. J. Devl Neuroscience

Received date: 19-12-2016 Revised date: 16-2-2017 Accepted date: 22-3-2017

Please cite this article as: Kasper, J.M., Milton, A.J., Smith, A.E., Laezza, F., Taglialatela, G., Hommel, J.D., Abate, N., Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of Ecto-nucleotide pyrophosphatase phosphodiesterase-1., *International Journal of Developmental Neuroscience* (2017), http://dx.doi.org/10.1016/j.ijdevneu.2017.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

DN 2181

Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of Ecto-nucleotide pyrophosphatase phosphodiesterase-1.

JM Kasper^a, AJ Milton^a, AE Smith^a, F Laezza^b, G Taglialatela^c, JD Hommel^a, and N Abate^d

^a Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas

^b Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas

^c Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch, Galveston, Texas

^d Division of Internal Medicine, Department of Endocrinology, University of Texas Medical Branch, Galveston, Texas

Corresponding author mail address:

James M Kasper

301 University Blvd, Route 0615

Galveston, TX 77555

- Mice exposed to HFD showed reduced performance on Morris Water Maze.
- Peripheral insulin resistance exacerbates HFD induced cognitive deficits.
- Mechanisms converge on decreased hippocampal signaling, which alters memory.

DN 2181

Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of Ecto-nucleotide pyrophosphatase phosphodiesterase-1.

JM Kasper^a, AJ Milton^a, AE Smith^a, F Laezza^b, G Taglialatela^c, JD Hommel^a, and N Abate^d

^a Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas

^b Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas

Download English Version:

https://daneshyari.com/en/article/8626160

Download Persian Version:

https://daneshyari.com/article/8626160

<u>Daneshyari.com</u>