Accepted Manuscript

Title: Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, *Periophthalmodon schlosseri*

Atsushi Ishimatsu, Yuen Kwo PII: S0944-

S0944-2006(16)30095-2 http://dx.doi.org/doi:10.1016/j.zool.2017.08.002 ZOOL 25594

To appear in:

Reference:

DOI:

Received date:	12-9-2016
Revised date:	2-8-2017
Accepted date:	2-8-2017

Please cite this article as: Zaccone, Giacomo, Lauriano, Eugenia Rita, Kuciel, Michał, Capillo, Gioele, Pergolizzi, Simona, Alesci, Alessio, Ishimatsu, Atsushi, Ip, Yuen Kwong, Icardo, Jose M., Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri.Zoology http://dx.doi.org/10.1016/j.zool.2017.08.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, *Periophthalmodon schlosseri*

Giacomo Zaccone¹, Eugenia Rita Lauriano², Michał Kuciel^{3,*}, Gioele Capillo², Simona Pergolizzi², Alessio Alesci², Atsushi Ishimatsu⁴, Yuen Kwong Ip⁵, Jose M. Icardo⁶

¹Department of Biomedical and Dental Sciences and Department of Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy

E-mail: gzaccone@unime.it

²Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy

³Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical Collage, Kopernika 15, 31-501 Krakow, Poland

⁴Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213, Japan

⁵Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543

⁶Department of Anatomy and Cell Biology, Polígono de Cazoña, University of Cantabria, 39011 Santander, Spain

*Corresponding author. E-mail address: michalkuciel@gmail.com

Highlights

- We document the presence of neuroepithelial cells (NECs) in the gill and skin tissues of *Periophthalmodon schlosseri*.
- NECs and their associated innervation may represent a functional system of O₂ chemoreceptors.
- NECs in the gill and skin are innervated by catecholaminergic nerves, suggesting their involvement in the control of respiration.

Abstract

Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution

Download English Version:

https://daneshyari.com/en/article/8627161

Download Persian Version:

https://daneshyari.com/article/8627161

Daneshyari.com