Contents lists available at ScienceDirect

# Cytokine

journal homepage: www.elsevier.com/locate/cytokine

## Sulfatase 1 mediates the attenuation of Ang II-induced hypertensive effects by CCL5 in vascular smooth muscle cells from spontaneously hypertensive rats

## Hye Ju Cha, Hye Young Kim, Hee Sun Kim\*

Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea

| ARTICLE INFO                                                                     | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Keywords:</i><br>Sulfatases<br>CCL5<br>Ang II type 2 receptor<br>Hypertension | Extracellular sulfatases, sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling and carcinogenesis. Chemokine CCL5 inhibits Ang II-induced hypertensive mediators via angiotensin II (Ang II) type 2 receptor (AT <sub>2</sub> R) pathway in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). In this study, we investigated the effect of Sulfs on anti-hypertensive effects of CCL5 in SHR VSMCs. CCL5 attenuated Ang II-induced inhibition of sulfatase activity in SHR VSMCs. Inhibition of Ang II-induced 12-lipoxygenase (12-LO) and endothelin-1 (ET-1) expression by CCL5 was reduced in Sulf1 small interfering RNA (siRNA)-transfected SHR VSMCs. In addition, attenuation of Ang II-induced dimethylarginine dimethylamino-hydrolase-1 (DDAH-1) inhibitory effects of CCL5 on Ang II-induced 12-LO and ET-1 expression and Ang II-induced inhibition of DDAH-1 expression in SHR VSMCs. Downregulation of Sulf2 did not affect inhibitory effects of NRNA. Downregulation of Sulf1 abrogated the expression in SHR VSMCs. These findings suggest that Sulf1 is a potential up-regulatory factor in anti-hypertensive actions of CCL5 via AT <sub>2</sub> R pathway on Ang II-induced hypertensive effects in SHR VSMCs. |

### 1. Introduction

Extracellular sulfatases (Sulfs) are well known as hydrolytic enzymes that control cell metabolism and signaling [1]. Sulfs regulate cell signaling by remodeling heparan sulfate proteoglycans (HSPGs) on the surface of cells. Sulf-mediated removal of 6-O-sulfate groups from HSPGs results in the release of bound growth factors, which initiate signaling pathways [1,2]. Therefore, the activity of Sulfs plays a pivotal role in both cell survival and proliferation. Aside from cell signaling, Sulfs modulate cellular processes such as cell development, muscle regeneration, neuromodulation, and tumor growth [1,3–5]. Sulfs are named as heparan sulfate 6-O-endosulfatases [2,6], and there are two types of heparan sulfate 6-O-endosulfatases: sulfatase 1 (Sulf1) or sulfatase FP1 and sulfatase 2 (Sulf2) or sulfatase FP2 [6]. Sulf1 and Sulf2 double knockout mice show significant developmental defects as well as reduced body weight [7,8]. Although Sulf1 and Sulf2 are structurally similar, they have reverse effects in tumor cells. Sulf1 inhibits angiogenesis and proliferation in cancer cells [9,10], whereas Sulf2 promotes angiogenesis and tumorigenic effects [11,12]. Thus, Sulfs have been suggested as therapeutic targets for cancer therapy.

Although the reduction in HSPG levels in the glomerular basement membrane has been related to hypertension [13], the role of Sulfs in hypertension development or maintenance is questionable. It has been reported that the maintenance of normal 6-*O*-sulfation levels by Sulf1 is important for the function of vascular smooth muscle cells (VSMCs) [14]. HSPGs are found in vascular walls, and overexpression or knockdown of the Sulf1 gene in normal VSMCs inhibits adhesion and increases of proliferation and apoptosis. Thus, Sulfs may play a functional role in hypertensive VSMCs.

The chemokines CC-chemokine ligand (CCL)-2 and CXC-chemokine ligand (CXCL)-8 play a major role in the development of hypertension [15–18]. Our previous studies show that CCL5 downregulates the

https://doi.org/10.1016/j.cyto.2017.12.027

Received 12 July 2017; Received in revised form 21 December 2017; Accepted 26 December 2017 1043-4666/@2017 Published by Elsevier Ltd.





Check fo

*Abbreviations:* CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; Sulf1, sulfatase 1; Sulf2, sulfatase 2; VSMC, vascular smooth muscle cell; SHR, spontaneously hypertensive rat; Ang II, angiotensin II; AT<sub>1</sub> R, Ang II type 1 receptor; AT<sub>2</sub> R, Ang II type 2 receptor; 12-LO, 12-lipoxygenase; ET-1, endothelin-1; DDAH-1, dimethylarginine dimethylaminohydrolase-1; Sulfs, sulfatases; HSPGs, heparan sulfate proteoglycans; AMPK, AMP-activated protein kinase; ADMA, asymmetric ( $N^G$ , $N^G$ ) dimethylarginine; DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; EDTA, ethylenediaminetetraacetic acid; PCR, polymerase chain reaction; cDNA, complementary DNA; siRNA, small interfering RNA; SEM, standard error of the means; eNOS, endothelial nitric oxide synthase

<sup>\*</sup> Corresponding author at: Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea.

E-mail address: heesun@med.yu.ac.kr (H.S. Kim).



**Fig. 1.** CCL5 attenuates the inhibition of Ang II-induced sulfatase expressions and activities in VSMCs from SHR. (A) VSMCs were untreated or treated with Ang II (0.1  $\mu$ mol/L) and/or CCL5 (100 ng/mL) for 2 h. Total RNAs and cell lysates were isolated and Sulf mRNAs and protein expressions determined by real-time PCR and immunoblotting, respectively. Data shown are representatives of three independent experiments. Bars represent the means  $\pm$  SEM of three independent experiments. Statistical significance was tested by ANOVA or Kruskal-Wallis test, followed by the Bonferroni test. \*p < 0.05, \*\*p < 0.01. (B) VSMCs were untreated or treated with Ang II (0.1  $\mu$ mol/L) and/or CCL5 (100 ng/mL) for the indicated time. Cell lysates were isolated and sulfatase activity assay was performed. Bars represent the means  $\pm$  SEM of three independent experiments. \*\*p < 0.01 versus VSMCs treated with Ang II.

expression of angiotensin II (Ang II)-induced hypertensive mediators, 12-lipoxygenase (LO) and endothelin-1 (ET-1), in VSMCs obtained from spontaneously hypertensive rats (SHR) [19,20]. In addition, CCL5 upregulates AMP-activated protein kinase (AMPK) activity and interleukin-10 (IL-10) and dimethylarginine dimethylaminohydrolase-1 (DDAH-1) expression [20–22]. Furthermore, CCL5 injection inhibits the elevation in blood pressure of the developing hypertension-state SHR [23]. Therefore, CCL5 is most likely to play a down-regulatory role in Ang II-induced vascular hypertension, which is contrary to the upregulatory roles of chemokines CCL2 and CXCL8 in pathophysiologic features of hypertension [15–18].

Based on our previous studies, which demonstrated CCL5-mediated downregulation of Ang II-induced 12-LO and ET-1 production and upregulation of DDAH-1 expression, we examined the relationship between CCL5-induced anti-hypertensive effects and Sulfs in VSMCs from SHR.

#### 2. Materials and methods

#### 2.1. Reagents

Total RNA extraction kit was purchased from iNtRON (Biotechnology, Seoul, Korea). Ang II was supplied by Calbiochem (San Diego, CA, USA). PD123319 was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA) and CCL5, from R&D systems (Minneapolis, MN). LightCycler FastStart DNA SYBR Green I Mix was purchased from Roche (Mannheim, Germany) and Lipofectamine 2000, from Invitrogen (Carlsbad, CA, USA). Primer sequences for Ang II type 1 receptor (AT<sub>1</sub> R), Ang II subtype 2 receptor (AT<sub>2</sub> R), Sulf1, Sulf2, 12-LO, ET-1, DDAH-1, and β-actin were synthesized at Bionics (Daejeon, Korea). Sulf1, Sulf2, 12-LO, ET-1, and DDAH-1 antibodies were supplied by Santa Cruz Biotechnology (California, USA). AT<sub>2</sub> R antibody was purchased from Abcam (Cambridge, UK) and monoclonal anti-γ-tubulin antibody, from Sigma-Aldrich (St. Louis, MO, USA). Rat Sulf1 small interfering RNA (siRNA) Sulf2 siRNA sequences were purchased from Bioneer technology (Daejeon, Korea) and Santa Cruz Biotechnology (California,

Download English Version:

# https://daneshyari.com/en/article/8628709

Download Persian Version:

https://daneshyari.com/article/8628709

Daneshyari.com