Accepted Manuscript

Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes

Fionn T. McSwiney, Bruce Wardrop, Parker N. Hyde, Richard A. Lafountain, Jeff S. Volek, Lorna Doyle

PII: S0026-0495(17)30328-1

DOI: doi:10.1016/j.metabol.2017.11.016

Reference: YMETA 53687

To appear in:

Received date: 21 November 2017 Accepted date: 22 November 2017

Please cite this article as: Fionn T. McSwiney, Bruce Wardrop, Parker N. Hyde, Richard A. Lafountain, Jeff S. Volek, Lorna Doyle, Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ymeta(2017), doi:10.1016/j.metabol.2017.11.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Title. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes.

Authors. Fionn T. McSwiney^a, Bruce Wardrop^a, Parker N. Hyde^b, Richard A. Lafountain^b, Jeff S. Volek^b, Lorna Doyle^a

^aDepartment of Sport, and Exercise Science, Waterford Institute of Technology, Waterford, Ireland

^bKinesiology Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA

Corresponding author at: Department of Sport, and Exercise Science, Waterford Institute of Technology, Waterford, Ireland.

E-mail address: <u>Imdoyle@wit.ie</u> (L. Doyle).

ABSTRACT

Background. Low-carbohydrate diets have recently grown in popularity among endurance athletes, yet little is known about the long-term (>4 wk) performance implications of consuming a low-carbohydrate high fat ketogenic diet (LCKD) in well-trained athletes.

Methods. Twenty male endurance-trained athletes (age 33 ± 11 y, body mass 80 ± 11 kg; BMI $24.7 \pm 3.1 \text{ kg/m}^2$) who habitually consumed a carbohydrate-based diet, self-selected into a high-carbohydrate (HC) group (n = 11, %carbohydrate:protein:fat = 65:14:20), or a LCKD group (n = 9, 6:17:77). Both groups performed the same training intervention (endurance, strength and high intensity interval training (HIIT)). Prior to and following successful completion of 12-weeks of diet and training, participants had their body composition assessed, and completed a 100km time trial (TT), six second (SS) sprint, and a critical power test (CPT). During post-intervention testing the HC group consumed 30-60g/h carbohydrate, whereas the LCKD group consumed water, and electrolytes.

Results.

The LCKD group experienced a significantly greater decrease in body mass (HC -0.8 kg, LCKD -5.9 kg; P = 0.006, effect size (ES): 0.338) and percentage body fat percentage (HC -0.7%, LCKD -5.2%; P = 0.008, ES: 0.346). Fasting serum beta-hydroxybutyrate (β HB) significantly increased from 0.1 at baseline to 0.5 mmol/L in the LCKD group (P = 0.011, ES: 0.403) in week 12. There was no significant change in performance of the 100 km TT between groups (HC -1.13 min.sec, LCKD -4.07 min.sec, P = 0.057, ES: 0.196). SS sprint peak power increased by 0.8 watts per kilogram bodyweight (w/kg) in the

Download English Version:

https://daneshyari.com/en/article/8633029

Download Persian Version:

https://daneshyari.com/article/8633029

<u>Daneshyari.com</u>