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a  b  s  t  r  a  c  t

Background:  The  rising  number  of  novel  pathogens  threatening  the  human  population  has  motivated  the
application  of  mathematical  modeling  for forecasting  the  trajectory  and  size  of  epidemics.
Materials  and  methods:  We  summarize  the  real-time  forecasting  results  of  the  logistic  equation  during
the 2015  Ebola  challenge  focused  on  predicting  synthetic  data  derived  from  a  detailed  individual-based
model of Ebola  transmission  dynamics  and  control.  We  also  carry  out a post-challenge  comparison  of  two
simple phenomenological  models.  In particular,  we  systematically  compare  the  logistic  growth  model  and
a  recently  introduced  generalized  Richards  model  (GRM)  that captures  a range  of early  epidemic  growth
profiles  ranging  from  sub-exponential  to exponential  growth.  Specifically,  we  assess  the  performance
of  each  model  for estimating  the reproduction  number,  generate  short-term  forecasts  of the epidemic
trajectory,  and  predict  the  final  epidemic  size.
Results: During  the  challenge  the logistic  equation  consistently  underestimated  the  final  epidemic  size,
peak  timing  and  the  number  of  cases  at peak  timing  with  an  average  mean  absolute  percentage  error
(MAPE)  of  0.49,  0.36  and 0.40,  respectively.  Post-challenge,  the  GRM  which  has  the  flexibility  to reproduce
a  range  of epidemic  growth  profiles  ranging  from  early  sub-exponential  to  exponential  growth  dynamics
outperformed  the  logistic  growth  model  in  ascertaining  the  final  epidemic  size as  more  incidence  data
was  made  available,  while  the  logistic  model  underestimated  the  final  epidemic  even  with  an  increasing
amount  of  data  of  the evolving  epidemic.  Incidence  forecasts  provided  by  the generalized  Richards  model
performed better  across  all scenarios  and  time  points  than  the  logistic  growth  model  with  mean  RMS
decreasing  from  78.00  (logistic)  to 60.80  (GRM).  Both  models  provided  reasonable  predictions  of  the
effective  reproduction  number,  but the  GRM  slightly  outperformed  the  logistic  growth  model  with  a
MAPE  of  0.08  compared  to 0.10, averaged  across  all scenarios  and  time  points.
Conclusions:  Our  findings  further  support  the  consideration  of  transmission  models  that  incorporate  flex-
ible early  epidemic  growth  profiles  in the  forecasting  toolkit.  Such  models  are  particularly  useful for
quickly  evaluating  a developing  infectious  disease  outbreak  using  only  case  incidence  time  series  of  the
early  phase  of  an  infectious  disease  outbreak.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The rising number of novel pathogens with transmission
potential threatening the human population has motivated
the development of mathematical and computational modeling
approaches for forecasting epidemic impact (Colizza et al., 2006;
Balcan et al., 2009; Merler et al., 2015; Chretien et al., 2015).
While epidemic models of disease spread have been used for
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decades primarily with the goal of gaining insight into the transmis-
sion dynamics and potential effect of different control strategies,
researchers have only recently started to harness available com-
putational power to simulate, calibrate, and generate forecasts of
epidemic spread using a variety of epidemic models ranging from
classic compartmental models to detailed agent-based models. Yet,
besides significant increases in computational power, detailed epi-
demic data about the transmission characteristics and theoretical
advances are needed in order to more realistically account for trans-
mission and control mechanisms for different disease and social
contexts.

http://dx.doi.org/10.1016/j.epidem.2016.11.002
1755-4365/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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Because epidemics associated with infectious diseases of rapid
dissemination typically comprise only a few disease generations
of transmission, epidemic assessment using forecasting models is
crucial during the early epidemic growth phase in order assess
the potential disease burden posed by the infectious agent and
approximate the scale of interventions needed to achieve epidemic
containment. Unfortunately, the availability of detailed epidemi-
ological data particularly during the early epidemic stages of an
evolving epidemic outbreak is hindered by delays in detecting the
first transmission events or releasing data to the public, or the
particular characteristics of the surveillance system. For instance,
during the 2014–15 Ebola epidemic in West Africa, publicly avail-
able epidemiological data from the World Health Organization
(WHO) was not available during the first weeks during which the
virus was to gain a solid foothold in populations of Guinea, Liberia
and Sierra Leone. Moreover, data was largely limited to aggre-
gated weekly Ebola case counts at the country level, which was
the primary publicly available dataset documenting the Ebola epi-
demic in West Africa. Case count data at the subnational level (e.g.
county/district levels) that later become available revealed sub-
stantial spatial heterogeneity in transmission patterns across the
affected areas in West Africa, which could have influenced epidemic
forecasts and assessments of the transmission potential (Chowell
et al., 2015).

In this article we summarize the forecasting results from using
the logistic equation to forecast the 2015 Ebola challenge. After
summarizing these results, we present the results of a post-
challenge systematic comparative analysis of the logistic growth
model, which assumes an early exponential growth phase (chowell
and Viboud, 2016), and the generalized Richards model (GRM)
(Chowell et al., 2016a), which incorporates a flexible range of
early epidemic growth profiles including early sub-exponential and
exponential growth epidemics. We  compare the performance of
these models in the context of the 2015 Ebola challenge based on
synthetic data derived from a detailed individual-based model of
Ebola transmission. Specifically, we analyze the reproduction num-
ber, forecasts of the epidemic trajectory and the final epidemic
size. In addition to model comparison, we compare two uncertainty
methods of the best fit solutions to the synthetic data.

2. Materials and methods

2.1. Model description

The well-known logistic growth model was  previously
employed for epidemic forecasting the 2015 Ebola epidemic
(Chowell et al., 2014), and was the model originally employed by
the Arizona State Team (BP & YK) during the 2015 Ebola Challenge.
This simple model is given by the following differential equation:

C ′ = rC
(

1 − C

K

)
(1)

where C’ (t) models the rate of change in the number of new cases
at week t. The logistic model relies on two parameters, the intrinsic
infection rate, r, and the final epidemic size K.

For comparative purposes, we also analyzed the performance
of the recently introduced generalized Richards model (GRM)
(Chowell et al., 2016a), which has been recently devised in order to
capture the possibility of early sub-exponential growth epidemics
and is given by:

C ′ = rCp
(

1 −
(
C

K

)a)
(2)

The GRM is an enhanced version of the Richards model (Wang
et al., 2012) by integrating the generalized-growth model (GGM;
C ′ = rCp(t)) (Viboud et al., 2016). Specifically, the GRM incorporates

a deceleration of growth parameter p to model a range of early
epidemic growth profiles ranging from constant incidence (p = 0),
polynomial (0 < p < 1) and exponential growth dynamics (p = 1). The
GRM model was recently employed to generate forecasts of the
Zika epidemic in Antioquia, Colombia (Chowell et al., 2016a). All
parameter values are positive: r is the growth rate, K is the final
epidemic size, and a is a parameter that modulates the peak timing.

2.2. Data

The Research and Policy for Infectious Disease Dynamics
(RAPIDD) Ebola Challenge was  designed to test the forecasting abil-
ity of mathematical models during an epidemic in real-time (Ebola
Challenge website, 2016). The challenge was  motivated by the need
to develop and test an ensemble of mathematical models for use
in forecasting developing infectious disease epidemics and to fos-
ter collaborations across different scientific domains. Goals of the
contest included:

1. Improving predictive capabilities for future emergencies
2. Guiding the implementation of control measures
3. Illustrating how data quality and availability affect prediction

accuracy

In this spirit, synthetic epidemic data was generated by a mod-
ified version of the model published by Merler et al. that was
calibrated for an EVD outbreak in Liberia (Merler et al., 2015). Syn-
thetic epidemic data was released at five different time points with
a test release on Sept. 18, 2015. Model predictions were due two
weeks later after each time point. For model calibration, we only
used the country level incidence time series data for predictions.

Contained in each of the five batches of released data,
four scenarios representing different epidemiological conditions,
behavioral changes, intervention measures and data availability
were prepared for use in forecasting the epidemic (chowell and
Viboud, 2016). In addition, each scenario dataset contained out-
break situation reports, transmission tree data and weekly reported
new EVD cases at the county and country level. New EVD cases were
forecasted at one, two, three and four weeks past each time point,
see Fig. S1.

2.3. The generation time

The generation time is defined as the time elapsed between
infection in an index case patient and infection in a patient infected
by that index case (Chowell et al., 2006). We  used transmission
tree data (Ebola Challenge website, 2016) that was made avail-
able as part of the challenge for scenarios 1, 3 and 4 to derive their
generation time distributions, respectively. For scenario 2 we  used
estimations from scenario 1.

2.4. The effective reproduction number

The effective reproduction number, Re(t), is defined as the
average number of new infections generated by one infectious indi-
vidual in the population at time t (Nishiura and Chowell, 2009).
Re(t) was  numerically evaluated by training each model on an
increasing amount of data (Chowell et al., 2016a,b) using the dis-
cretized renewal equation (Nishiura and Chowell, 2009; Chowell
et al., 2016b; Fraser, 2007):

Re (ti) = Ii∑i
j=0Ii−j�j

(3)

where Ii denotes incidence at time ti, �j denotes the discre-
tised probability distribution of the generation interval, which we
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