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A B S T R A C T

Lysine crotonylation (Kcr) is an evolution-conserved histone posttranslational modification (PTM), occurring in
both human somatic and mouse male germ cell genomes. It is important for male germ cell differentiation.
Information of Kcr sites in proteins is very useful for both basic research and drug development. But it is time-
consuming and expensive to determine them by experiments alone. Here, we report a novel predictor called iKcr-
PseEns that is established by incorporating five tiers of amino acid pairwise couplings into the general pseudo
amino acid composition. It has been observed via rigorous cross-validations that the new predictor's sensitivity
(Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 90.53%, 95.27%, 94.49%, and 0.826, respectively.
For the convenience of most experimental scientists, a user-friendly web-server for iKcr-PseEns has been es-
tablished at http://www.jci-bioinfo.cn/iKcr-PseEns, by which users can easily obtain their desired results
without the need to go through the complicated mathematical equations involved.

1. Introduction

Mounting evidences have suggested that histone PTMs (post-trans-
lational modifications) play a crucial role in various biological pro-
cesses, including cell differentiation and organismal development.
Meanwhile, the aberrant modification of histones may cause various
diseases such as cancers [1,2]. Lysine crotonylation (Kcr) is an evolu-
tionarily conserved PTM in histone proteins. Therefore, knowledge of
Kcr sites in proteins is very important for in-depth understanding the
physiological roles of crotonylation [3] and drug development as well.
Given a histone protein sequence that contains many lysine (K) re-
sidues, can we identify which one can be crotonylated and which one
cannot?

Although the information of crotonyllysine can be determined by
means of mass spectrometry-based proteomics approach [4], it is time-
consuming and expensive. Therefore, it is highly desired to develop
computational methods to deal with this problem. Actually, many
studies have been carried out for identifying the sites of various types of
PTMs in protein and DNA/RNA sequences (see, e.g., [5–28]). All these

methods have provided their web-servers that are very useful for most
experimental scientists, particularly for those working in the field of
drug development [11,29]. But to our best knowledge, no web-server
predictor whatsoever available for identifying the crotonylation sites in
histone proteins. The present study was initiated in an attempt to fill
such an empty area.

As elaborated in a series of recent publications (see, e.g., [30–40]),
in order to develop a really useful sequence-based statistical predictor
for a biological system, one should observe the following 5-step rules
[41]: (1) construct or select a valid benchmark dataset to train and test
the predictor; (2) formulate the biological sequence samples with an
effective mathematical expression that can truly reflect their intrinsic
correlation with the target to be predicted; (3) introduce or develop a
powerful algorithm (or engine) to operate the prediction; (4) properly
perform cross-validation tests to objectively evaluate the anticipated
accuracy of the predictor; (5) establish a user-friendly web-server for
the predictor that is accessible to the public. Below, we are to describe
how to deal with these steps one-by-one.
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2. Materials and method

2.1. Benchmark dataset

In this study, the benchmark dataset was constructed as follows. By
searching UnitProt database [42] at http://www.uniprot.org/, we ob-
tained 55 histone proteins that contain experiment-confirmed croto-
nylation sites as given in Supporting Information S1 and 46 histone
proteins that do not contain any experiment-confirmed crotonylation
sites as given in Supporting Information S2.

For facilitating description later, the Chou's peptide formulation
[43–45] was adopted. It has been widely used in many different areas of
computational biology (see, e.g., [7–9,12,15,17,19–21,36,46,47]).

According to Chou's scheme [43], a potential Kcr site-containing
peptide sample can be generally expressed by

 = ⋯ ⋯− − − − − + + + − +P ( ) R R R R R R R Rξ ξ (ξ 1) 2 1 1 2 (ξ 1) ξ (1)

where the double-line character  is used to emphasize the importance
of amino acid code K in this study, the subscript ξ is an integer, R−ξ

represents the ξ-th upstream amino acid residue from the center, the
R+ξ the ξ-th downstream amino acid residue, and so forth. The
(2ξ+1)-tuple peptide sample P ( )ξ can be further classified into the
following two categories:
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where +P ( )ξ denotes a true Kcr segment with K at its center, −P ( )ξ
denotes a corresponding false Kcr segment, and the symbol ∈ means “a
member of” in the set theory.

In literature the benchmark dataset usually consists of a training
dataset and a testing dataset: the former is for training a model, while
the latter for testing it. But as elucidated in a comprehensive review
[48], there is no need at all to artificially separate a benchmark dataset
into such two parts if the prediction model is tested by the jackknife or
subsampling (K-fold) cross-validation because the outcome thus ob-
tained is actually from a combination of many different independent
dataset tests. Thus, the benchmark dataset for the current study can be
formulated as

  = ∪+ −
ξ ξ ξ (3)

where the positive and negative subsets, +
ξ and −

ξ , only contain the
true and false Kcr samples, +P ( )ξ and −P ( )ξ , respectively (see Eq. (2));
while ⋃ denotes the symbol of “union” in the set theory [48].

The concrete procedures to construct the benchmark dataset are
given below. (1) By sliding the (2ξ + 1)-tuple peptide window of Eq.
(1) along each of the 55 crotonylated protein sequences in Supporting
Information S1 and 46 non-crotonylated proteins in Supporting In-
formation S2, collected were only those peptide segments with =K at
the center. (2) If the segment thus picked around the two ends of the
protein is less than (2ξ+1), the lacking code was filled with the same
code of its nearest neighbor. (3) The peptide segment sample thus ob-
tained was put into the positive subset +

ξ if its center was true Kcr site,
namely experimentally annotated as “can be crotonylated”; otherwise,
into the negative subset −

ξ . (4) To reduce redundancy and homology
bias, none of included peptide segments had pairwise sequence identity
with any other in a same subset. By strictly observing the above pro-
cedures, we obtained an array of benchmark datasets with different ξ
values, and hence different lengths of peptide samples as well (see Eq.
(1)), as illustrated below
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Besides, the numbers of samples thus obtained would also depend
on the value of ξ [15]; i.e.,

= ++ −N N N(ξ) (ξ) (ξ) (5)

where N+(ξ) denotes the number of samples in the positive benchmark
dataset +

ξ , while N−(ξ) the number of samples in the negative bench-
mark dataset −

ξ .
But the preliminary tests had indicated that when ξ=17, i.e., the

window's width was of 35 residues, the outcomes were the most pro-
mising. Accordingly, hereafter, we would focus on the case of ξ=17;
thus Eqs. (1) and (3) can be, respectively, reduced to

 = ⋯ ⋯− − − − + + + +P( ) R R R R R R R R17 16 2 1 1 2 16 17 (6)

and

  = ⋃+ − (7)

where the positive subset + contains N+=169 true Kcr samples, while
the negative subset − contains N−=866 false Kcr samples. The de-
tailed sequences of these samples along with their positions in the
proteins as well as the proteins' codes are given in Supporting In-
formation S3.

2.2. Sample representation or formulation

Now let us consider the 2nd step of the Chou's 5-step rule [41]; i.e.,
how to formulate the peptide sequences concerned with an effective
mathematical expression that can truly reflect their essential correla-
tion with the target investigated. For simplifying the description,
without losing generality we can convert Eq. (6) into

 = ⋯ ⋯P( ) R R R R R R R R R1 2 16 17 18 19 20 34 35 (8)

where R1represents the 1st residue of the peptide sample investigated,
R2 the 2nd residue, R3 the 3rd residue, and so forth. Note that for the
current study, R18 is always fixed at K as shown in Eq. (6) and Sup-
porting Information S3.

Since all the existing machine-learning algorithms, such as SVM
(Support Vector Machine) [49,50], KNN (K-Nearest Neighbor) [51],
PCA (Principal Component Analysis) [52], and RF (Random Forest)
[15,27], can only handle vectors [11], we have to convert the se-
quential expression of Eq. (8) into a vector. But a vector defined in a
discrete model might completely leave out all the sequence-order in-
formation. To deal with this problem, the PseAAC (Pseudo Amino Acid
Composition) was introduced [53,54]. Ever since the concept of PseA-
AC was introduced, it has swiftly penetrated into nearly all the areas of
computational proteomics (see, e.g., [5,8,36,38,40,55–71] and a long
list of references cited in two review papers [29,72]). Encouraged by
the successes of using PseAAC to deal with protein/peptide sequences,
its idea and approach have been extended to deal with DNA/RNA se-
quences [13,23,30–32,39,73] in computational genomics/genetics via
PseKNC (Pseudo K-tuple Nucleotide Composition) [74–77]. Recently, a
very powerful web-server called “Pse-in-One” [76] and its updated
version “Pse-in-One 2.0” [77] were developed, by which users can
generate any pseudo components for both protein/peptide and DNA/
RNA sequences as they wish or define.

According to the concept of the Chou's pseudo components [41,75],
the peptide samples of Eq. (8) can be generally formulated as

 = ⋯ ⋯Ψ Ψ Ψ ΨP( ) [ ]u Ω
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