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Abstract

We consider a classical problem of nonholonomic system dynamics – the problem of motion of a rotationally symmetric body on

a fixed perfectly rough plane in a case when the moving body is a rotationally symmetric ellipsoid. Using the Kovacic algorithm

we found several conditions under which equations of motion of the ellipsoid can be completely solved in quadratures.
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1. Introduction

The problem of rolling without sliding of a heavy rotationally symmetric body on a fixed horizontal plane is a

classical problem of nonholonomic mechanics. In 1897, S.A. Chaplygin in his paper1 proved that the solution of this

problem is reduced to the integration of the second-order linear differential equation with respect to the component

of the angular velocity of the body in the projection on its axis of symmetry. However, a solution of this differential

equation cannot always be found. In a case when the moving body is a nonhomogeneous dynamically symmetric

ball, the general solution of the corresponding equation is expressed in terms of elementary functions1. In a case of

motion of a circular disk or a hoop on a horizontal plane, the general solution of the mentioned equation is expressed

in terms of a hypergeometric series1. In the paper2, Kh.M. Mushtari continued the investigation of the problem of

motion of a heavy rotationally symmetric body on a perfectly rough horizontal plane. Under additional condition

imposing restrictions on a shape of the rolling body and a mass distribution in it, two new particular cases have been

found, when the motion of the body can be investigated completely. In the first case the moving body is bounded

by the surface formed by rotating a parabolic arc about an axis passing through its focus, and in the second case the

moving body is a rotationally symmetric paraboloid. For other rotationally symmetric bodies moving without sliding

on a horizontal plane, an exact solution of the corresponding second-order linear differential equation is unknown.
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In this paper we try to find the exact solution of the corresponding second-order linear differential equation in a

case when the moving body is a rotationally symmetric ellipsoid. To find this solution we use the so-called Kovacic

algorithm.

In 1986, American mathematician J. Kovacic proposed the algorithm3 for finding a general solution of a second-

order linear differential equation with variable coefficients for a case when this solution can be expressed in terms

of so-called liouvillian functions3,4. Recall that liouvillian functions are functions that are built up from the rational

functions by algebraic operations, taking exponentials and by integration. If a linear differential equation has no

liouvillian solutions, the Kovacic algorithm also allows to ascertain that fact.

Using the Kovacic algorithm in the problem of motion of a rotationally symmetric ellipsoid on a perfectly rough

horizontal plane we found several cases when the corresponding second-order linear differential equation has liouvil-

lian solutions under additional restrictions on the parameters of the system. Physical admissibility of these additional

restrictions is discussed.

The paper is organized as follows. In Section 2 we give the detailed problem formulation following the papers

by Chaplygin1 and Mushtari2. We derive also the linear second-order differential equation for a general rotationally

symmetric body. In Section 3 we discuss specific features of application of the Kovacic algorithm to second-order

linear differential equations. Finally in Section 4 we present our own results obtained in the problem of motion of a

heavy rotationally symmetric ellipsoid on a perfectly rough horizontal plane.

2. General Problem Formulation

Let us consider the general problem of motion of a rotationally symmetric rigid body on a fixed perfectly rough

horizontal plane. Suppose that the centre of mass G of the body is situated on the symmetry axis Gζ, and moments

of inertia about principal axes of inertia Gξ and Gη perpendicular to Gζ are equal to each other. The body moves in

presence of the homogeneous gravity field.

Let Oxyz be the fixed coordinate frame with the origin in the supporting plane Oxy. Let θ be the angle between the

symmetry axis of the body and the vertical. The distance GQ of the centre of mass over the plane Oxy is a function of

angle θ 1,2:

GQ = f (θ). (1)

Let β be the angle between the meridian Mζ of the body and a certain fixed meridian plane, and α is the angle be-

tween horizontal tangent MQ of the meridian Mζ and the Ox-axis. The position of the body is completely determined

by the angles α, β and θ and by the x and y coordinates of the point M.

Let us specify now the position of the coordinate system Gξηζ. Suppose that the Gξ-axis is always situated in the

plane of the vertical meridian Mζ while the Gη-axis is perpendicular to this plane (Fig. 1). In this case the coordinate

system Gξηζ moves both in the space and in the body. Denote by ξ, η, ζ the coordinates of the point of contact M of

the body with the supporting plane in the coordinate system Gξηζ. Then η = 0 and1,2:

ξ = − f (θ) sin θ − f ′(θ) cos θ, ζ = − f (θ) cos θ + f ′(θ) sin θ, (2)

where ()′ is a derivative of function f (θ) with respect to θ. Thus we can completely characterize the surface of the

moving body using the function f (θ).
Let the velocity v of the centre of mass G, the angular velocity vector ω of the body, the angular velocity vector Ω

of the coordinate system Gξηζ, and the reaction of the plane R are specified in the system Gξηζ by the components

vξ, vη, vζ ; p, q, r; Ωξ, Ωη, Ωζ and Rξ, Rη, Rζ , respectively. Let m be the mass of the body, A1 – its moment of inertia

about axes Gξ and Gη, and A3 – its moment of inertia about the symmetry axis.

Since the Gζ axis is fixed in the body, then

Ωξ = p, Ωη = q. (3)

The third component Ωζ can be easily expressed through p; indeed, the plane Gξζ is always vertical, i.e. the

projection of the angular velocity of the axes Gξηζ on MQ equals to zero, therefore

Ωζ = Ωξ cot θ = p cot θ. (4)
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