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Abstract

In this paper, we study the transverse vibrations of a string and of a beam which are infinitely long in one direction. These vibration

problems can be used as a toy model for rain-wind induced oscillations of cables. In order to suppress undesired vibrations in the

string (or beam), dampers are used at the boundary. The main aim of this paper is to show how solutions for these string and beam

problems on a semi-infinite domain can be computed. We derive explicit solutions for a linear string problem which is attached to

a mass-spring-dashpot system at x = 0 by using the D’Alembert method, and for a transversally vibrating beam problem which

has a pinned, sliding, clamped or damping boundary, respectively, at x = 0 by using the method of Laplace transforms. It will be

shown how waves are reflected for different types of boundaries.
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1. Introduction

In recent decades, among both applied mathematicians and engineers, research in the field of the vibrations of the

stay cables of cable stayed bridges has received a lot of attention. Usually inclined stay cables of bridges are attached

to a pylon at one end and to the bridge deck at the other end. Due to low structural damping of the bridge, a wind-field

containing raindrops may excite a galloping type of vibrations. For example, one can refer to the Erasmus bridge in

Rotterdam, which started to swing under mild wind conditions, shortly after it was opened to the traffic in 1996. To

suppress the undesired oscillations of the bridge, dampers were installed, as can be seen in Figure 1. As has been

observed from engineering wind-tunnel experiments, raindrops hitting the inclined stay cable cause the generation of

one or more rivulets on the surface of the cable. The presence of flowing water on the cable changes the mass of the

bridge system that can lead to instabilities, which are not fully understood. The vibrations of the bridge cables can be

described mathematically by string-like or beam-like problems. Models for such cables can be found in1,2. In order to

stabilize the problem, boundary damping is taken into account. The aim of this paper is to provide an understanding
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Fig. 1: Used new dampers to the Erasmus bridge to prevent vibrations. Photo: courtesy of TU Delft.

of how effective boundary damping is for string and beam equations. The reflection and damping properties of waves

propagating at a non-classical boundary for wave equations on a semi-infinite interval was studied in3 by using the

D’Alembert formula.

Table 1: Boundary condition(s) for a semi-infinite string (Model 1) and a beam (Model 2).

Type of system Left end condition Boundary conditions at x = 0

Model 1

Mass-spring-dashpot3 mutt = Tux − ku − αut

Model 2

Pinned u = 0, uxx = 0

Sliding ux = 0, uxxx = 0

Clamped u = 0, ux = 0

Damper uxx = 0, EIuxxx = αut

2. The Transverse Vibrations of The String-problem (Model 1)

In this section, we will consider the perfectly flexible string of infinite extension in the positive x-direction. It is

assumed that gravity and other external forces can be neglected. The vertical transversal displacement u(x, t) along a

string, where x is the position along the string and t is the time, satisfies the following differential equation which can

be obtained by using Hamilton’s principle4:

ut t − c2ux x = 0, 0 < x < ∞, t > 0, (1)

u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x < ∞, (2)
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