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A B S T R A C T

A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and
electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the
parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the
standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel
width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input.
Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a
Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long
computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM
algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm
of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input,
and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-
sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It
provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a
DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the
standard algorithm.

1. Introduction

Single-particle electron microscopy generates high-resolution 3D
density maps for large biomolecular complexes. Fitting an atomic
model or another 3D map onto the map is important to extract biolo-
gical insights. However, because a 3D density map has a large number
of grid points with densities, the 3D fitting often requires a long com-
putation time. To reduce the computation time, several coarse-grained
or shape approximation methods have been proposed. The most pop-
ular approach is the placement of a set of 3D points (3D point model).
The vector quantization method is widely used for approximating the
molecular shapes of both atomic models and density maps (Wriggers
et al., 1998). The K-means method is also popular, and generates a set
of 3D points (Lasker et al., 2009). De-Alarcón et al. proposed a kernel
density estimation algorithm for vector quantization (De-Alarcón et al.,
2002). They regarded a 3D point as an isotropic Gaussian function with
the same variance (homoscedastic function), and employed a maximum
likelihood method (EM algorithm) to estimate the parameters. Jonić
and Sorzano employed a set of homoscedastic isotropic Gaussian
functions with weights (Jonić and Sorzano, 2016), and proposed a
heuristic algorithm to optimize not only the centers and weights, but

also the number of Gaussian functions. Many 3D fitting programs, such
as SITUS (Wriggers, 2012) and γ-TEMPy (Pandurangan et al., 2015),
employ the 3D point model, because it can solve a continuous optimi-
zation problem of rotations and translations as a combinatorial opti-
mization problem of matching points. The 3D point model (or a set of
isotropic Gaussian functions with weights) is also suitable for an elastic
network model to study dynamics and deform a density map (Tama
et al., 2002; Ming et al., 2002a,b). Jin et al. employed a set of isotropic
Gaussian functions with weights to perform the elastic 3D-to-2D
alignment (Jin et al., 2014). Joubert and Habeck proposed a method for
reconstructing the initial 3D density map from 2D images, using iso-
tropic homoscedastic Gaussian functions with weights (Joubert and
Habeck, 2015). Jonić et al. employed an isotropic Gaussian function to
reduce the noise in high-resolution density maps (Jonić et al., 2016).

A Gaussian mixture model (GMM) has been utilized to approximate
a 3D density map and an atomic model (Kawabata, 2008). GMM is a
probability distribution function with a weighted sum of multiple
Gaussian functions, and is widely used for statistical modeling and
classification (McLachlan and Peel, 2000; Bishop, 2006; Gupta and
Chen, 2011). We have developed the program gmfit for fitting density
maps and atomic models using GMM (Kawabata, 2008). We also have

https://doi.org/10.1016/j.jsb.2018.03.002
Received 25 May 2017; Received in revised form 2 February 2018; Accepted 3 March 2018

E-mail address: kawabata@protein.osaka-u.ac.jp.

Journal of Structural Biology xxx (xxxx) xxx–xxx

1047-8477/ © 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Please cite this article as: Kawabata, T., Journal of Structural Biology (2018), https://doi.org/10.1016/j.jsb.2018.03.002

http://www.sciencedirect.com/science/journal/10478477
https://www.elsevier.com/locate/yjsbi
https://doi.org/10.1016/j.jsb.2018.03.002
https://doi.org/10.1016/j.jsb.2018.03.002
mailto:kawabata@protein.osaka-u.ac.jp
https://doi.org/10.1016/j.jsb.2018.03.002


developed a WEB server for fitting pairs of density maps and atomic
models (Suzuki et al., 2016). The program IMP (Integrative Modeling
Platform) also employs GMM for fitting (Lasker et al., 2010; Russel
et al., 2012; Robinson et al., 2015). GMM has several advantages over
the 3D point model. First, because a component of the mixture model is
an anisotropic Gaussian function, it can approximate a given shape
using a smaller number of components, as compared to isotropic 3D
points. Even one 3D Gaussian function has a shape property in three
eigen values of its covariance matrix, whereas one 3D point or isotropic
Gaussian function has no shape property. Second, GMM has an efficient
and solid algorithm for the fitting, the expectation–maximization (EM)
algorithm, which maximizes a likelihood function (Dempster et al.,
1977). Third, an overlap integral of two GMMs can be analytically
obtained, and the integral is differentiable with respect to the transla-
tion and rotation of the GMM (Kawabata, 2008). This property is
beneficial for finding the best fitting configuration using a derivative-
based technique.

However, the standard EM algorithm for GMM has several pro-
blems. First, it accepts points as its input without considering their size.
A voxel of a 3D density map and an atom of an atomic model are
handled simply as a center point, and the width of the voxel and the
spherical radius of the atom are ignored. Second, the EM algorithm has
the so-called “singularity problem”, as it sometimes stops its iterative
procedure when one of the Gaussian functions has a very small spread
and zero-division occurs (Bishop, 2006; Gupta and Chen, 2011). When
a 3D Gaussian function almost corresponds to the input points on the
plane, the determinant of its covariance matrix is close to zero, and then
the value of the Gaussian function becomes unstable. In the 3D space,
three or fewer points are always on the plane. The GMM singularity
problem has been discussed in several textbooks (Bishop, 2006; Gupta
and Chen, 2011). These books mentioned that the EM algorithm
sometimes fails by approaching singularities of the log-likelihood
function, especially when the number of observations is small relative
to the number of Gaussian functions. The use of suitable ad hoc heur-
istics, such as reinitializing means randomly, or employing a MAP EM
(maximum a posterori EM) method by introducing a prior distribution,
was recommended. The singularity problem is not observed frequently,
however, when hundreds of density maps must to be converted to
GMMs, often some of them will have singularity problems. We observed
many singularities, while developing the server for searching and
comparing EMDB data (Suzuki et al., 2016). Since a singularity stops
the repetition of the EM algorithm before convergence, it often provides
a GMM that is less similar to the original map. Third, the EM algorithm
requires a long computation time for converting a density map with a
large number of grid points. For example, only 5 s are required to
convert a 643 voxel map to 10 Gaussian functions, whereas six hours
are required for converting a 5123 voxel map to 10 Gaussian functions.

To solve these problems, we now introduce a Gaussian-input GMM
algorithm with inputs that are a set of Gaussian functions corresponding
to voxels or atoms. The variance of the input Gaussian function are
determined by those of a voxel cube or an atomic sphere. The likelihood
function can be optimized by an extension of the standard EM algo-
rithm of the GMM. This new algorithm is expected to generate a GMM
with the identical variance to the input voxels and atoms, and to be free
from the singularity problem. To enhance the computation speed to
convert a large 3D density map into a GMM, we introduce a down-
sampled Gaussian functions (DSG) by merging neighboring voxels into
an anisotropic Gaussian function. We also introduce a down-sampled
Gaussian-input GMM, which uses the DSG as the input. This new down-
sampling algorithm is expected to generate a better model than that
obtained from a simple down-sampled map.

2. Methods

2.1. Outline of EM algorithm for Gaussian mixture model

The goal of this study is to estimate the parameters of a Gaussian
mixture model to approximate the shape of a 3D density map or an
atomic model. We want to reproduce the observed data (3D density
map or atomic model), using the probability of the model P(r|θ) defined
as follows:
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where r is a 3D vector, ϕk(r) is the k-th 3D Gaussian function, wk is the
weight for ϕk(r), K is the number of Gaussian functions, and θ indicates
a set of parameters. The k-th Gaussian function is defined as follows:
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where μk is a 3D vector of the center position, and Σk is a 3× 3 cov-
ariance matrix. If we have to clearly indicate the parameters for the
function, we can utilize ϕ(r|μk, Σk), instead of ϕk(r). The value of the
weight wk ranges from 0 to 1, and their sum should be 1:
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The parameter set θ for the GMM is defined as θ={{wk}, {μk},
{Σk}}. Input data can be classified into three types. These three types of
GMM for both the density map and atomic model are schematically
summarized in Fig. 1. i) Point-input (P-input; Fig. 1B and F). The input
is a set of 3D positions {ri}. ii) Weighted point-input (WP-input; Fig. 1C
and G). The input is a set of 3D positions {ri} with weights {ρi}. iii)
Gaussian-input (G-input; Fig. 1D and H). The input is a set of 3D
Gaussian functions {ϕi(r)} with weights{ρi}. The point-input GMM is
the most standard GMM. Many textbooks have described its algorithm,
and the expectation-maximization (EM) algorithm can efficiently opti-
mize the likelihood of the model (McLachlan and Peel, 2000; Bishop,
2006; Gupta and Chen, 2011). The weighted point-input GMM is also
solved by a simple extension of the EM algorithm of the point-input
GMM (Kawabata, 2008), and its details are described in the accom-
panying Supplementary Information. The EM algorithms for the point-
input and the weighted point-input GMMs are summarized in Fig. 2.
The EM algorithm iterates the E (expectation)-step and the M (max-
imization)-step (Dempster et al., 1977). The E-step estimates the pos-
terior probability that the i-th sample was generated by the k-th
Gaussian function. The posterior probabilities hki(t) for the point-input
and the weighted point-input GMM are identical, where t is the number
of iterations. The M-step updates the parameters of GMM, wk, μk, and
Σk. The equations for the updates are also summarized in Fig. 2. Note
that the equation of posterior probability (denoted as hi(rt)) in
Kawabata (2008) was incorrect, and this mistake was fixed in Fig. 2.

In the next subsection, we will explain the EM algorithm of the
Gaussian-input GMM in detail. For readers unfamiliar with the standard
Gaussian mixture model, the Supplementary Information includes the
algorithm for the weighted point-input GMM and the basic mathe-
matics. For readers uninterested in the mathematical details of the al-
gorithm, the equations in Fig. 2 are the minimum requirements to de-
velop Gaussian-input GMM computer programs.

2.2. Likelihood function for Gaussian-input GMM

Next, we explain the likelihood function for the Gaussian-input
GMM. The input of the Gaussian-input GMM is a set of Gaussian
functions {ϕi(r)} with weights {ρi}. The number of functions (the length
of {ϕi(r)} and {ρi}) is N. Each weight ρi is assumed to be non-negative.
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