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ARTICLE INFO ABSTRACT

Keywords: Extraction of particles from cryo-electron microscopy (cryo-EM) micrographs is a crucial step in processing
Structural biology single-particle datasets. Although algorithms have been developed for automatic particle picking, these algo-
Cryo-EM ) rithms generally rely on two-dimensional templates for particle identification, which may exhibit biases that can
S;‘;:‘;‘ls;‘:irg;“g propagate artifacts through the reconstruction pipeline. Manual picking is viewed as a gold-standard solution for

particle selection, but it is too time-consuming to perform on data sets of thousands of images. In recent years,
crowdsourcing has proven effective at leveraging the open web to manually curate datasets. In particular, citizen
science projects such as Galaxy Zoo have shown the power of appealing to users’ scientific interests to process
enormous amounts of data. To this end, we explored the possible applications of crowdsourcing in cryo-EM
particle picking, presenting a variety of novel experiments including the production of a fully annotated particle
set from untrained citizen scientists. We show the possibilities and limitations of crowdsourcing particle se-

Data processing
Single-particle analysis

lection tasks, and explore further options for crowdsourcing cryo-EM data processing.

1. Introduction

In the past several years cryo-electron microscopy (cryo-EM) has
become a powerful tool for elucidating the structures of macro-
molecular complexes to near-atomic resolution, and has been effec-
tively used to solve structures of membrane-bound and non-rigid pro-
teins that are difficult to crystallize. Handling low signal-to-noise ratio
cryo-EM data necessitates processing large amounts of data, involving
thousands of individual micrographs each containing hundreds of
particles. A crucial, early step in cryo-EM processing is the selection of
individual protein particles from EM micrographs to be used in gen-
erating a 3D reconstruction. In the past, particles were hand-picked by a
researcher after data collection, but since cryo-EM datasets can now
consist of thousands of micrographs and hundreds of thousands of
particles, manual picking has become viewed as an unnecessarily banal
and time-consuming task for cryo-EM researchers (Scheres, 2015).

As a result, many algorithms have been developed to automate
particle picking and reduce the time required for this crucial step in EM
processing. Popular methods either identify features common to parti-
cles, such as particle size with DoG Picker, or use supplied templates to
identify similar-looking subsections of a micrograph (Voss et al., 2009).
Automatic methods are limited, however, in their ability to distinguish
noise and contaminants from legitimate particles, and will sometimes
misplace the center of particles in cases where they are closely packed.
Inaccuracies in the collection of particle data can disrupt processing; in
the challenging reconstruction of the HIV-1 envelope glycoprotein
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complex by Liao et al., Henderson noted that a lack of validation of the
particle set picked via a template method begat a set of particles con-
taining significant white noise, which nonetheless sufficiently matched
the templates provided (Liao et al., 2013; Henderson, 2013). Indeed,
manual selection by a trained microscopist is still viewed as an ideal
strategy in many cases, especially when templates are not available or
the protein particles are ill-defined in the micrographs. Implementing
manual selection necessitates an immense amount of time and effort for
this single processing step; as an example, Fan et al. manually boxed out
156,805 particles from 3743 micrographs when determining the
structure of the InsP3;R ion channel. The time needed to produce a
manually-picked set precludes its adoption as a regular procedure for
particle picking, and a method that reduced the temporal investment
could prove valuable for researchers. In addition, scientists seeking
particular idealized structures can consciously or subconsciously impart
their own biases into manual picking, preferring certain angular views
of the particle or omitting subsets of particles that do not exhibit an-
ticipated features (Cheng et al., 2015).

This work examines an increasingly popular method of data pro-
cessing, crowdsourcing. A term coined in 2006, crowdsourcing opens a
task normally assigned to a specific worker to a wider, more generalized
userbase (Good and Su, 2013). In recent years, crowdsourcing in-
itiatives have come to rely on the ability of the internet to quickly
disseminate data and recruit users to perform the necessary processing.

There are many approaches to crowdsourcing, including scientific
games (e.g., Foldit, Eterna) and paid microtask services (e.g., Amazon
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Mechanical Turk, Crowdflower). Particularly intriguing is the emer-
gence of ’citizen science’ projects, which rely on community engage-
ment and scientific intrigue to attract users to an otherwise menial task.
Citizen science has proven extremely successful, with the project
"Galaxy Zoo’ classifying over 1 million images from more than 100,000
users over nine months (Lintott et al., 2008). In this paper, we present
and analyze the results from a citizen science project 'Microscopy
Masters’, which focused on crowdsourcing particle picking from single-
particle cryo-EM micrographs. We examine the efficacy of crowdsour-
cing particle picking to lightly trained workers when compared to
trained electron microscopists, and show that particle sets derived
through crowdsourcing can yield robust and reliable 2D class averages
and 3D reconstructions. The method presented here is shown as not
only a viable time-saving option for datasets that confound automatic
pickers, but also shows promise for future applications of crowdsour-
cing to cryo-EM data processing.

2. Results
2.1. Production of gold standard

A ’gold standard’ or ’ground truth’ for evaluating annotated subjects
is crucial for beginning any classification study. In the case of algo-
rithmic particle picking, evaluation is typically performed relative to a
set of manually picked micrographs. Although manually picked datasets
are available from previous studies examining particle picking, they
generally contain a small number of images and are only annotated by a
single individual (Scheres, 2015). In order to create a richer gold
standard for evaluating our crowdsourcing protocol, micrographs were
chosen from a single-particle cryo-EM dataset of the 26S proteasome lid
complex (Dambacher et al., 2016). Out of the 3,446 micrographs used
in the published refinement, 190 were marked by at least two ran-
domly-assigned cryo-EM experts, with a total of nine contributing
participants.

In addition, intra-expert agreement was measured by requiring each
expert to mark five randomly chosen images twice. The complete union
of all marks by all experts totaled to 13,028 particles and was used as
the ground truth for all following accuracy measurements in this paper.

Agreement between two annotations was calculated using the
Jaccard index, defined as the proportion of the size of the intersection
of the particles picked in two annotations to the size of the union. Intra-
expert agreement was found to be surprisingly low and only slightly
higher than inter-expert agreement, intra-agreement between all ex-
perts averaged 0.56 and inter-agreement averaged 0.45. This indicates
that less than three quarters of particles picked by a single individual
are picked again on reannotation by the same annotator on the same
image. Among those annotators who completed all assigned micro-
graphs, agreement was consistently higher among intra-expert com-
parisons (Table 1).

Table 1

Intra-expert and inter-expert agreement calculated using Jaccard index for experts
who created the gold dataset. Of the nine experts who participated, one did not
complete all assigned micrographs and so was not included in this table.

User Inter Intra
Expert 1 0.45 0.64
Expert 2 0.42 0.46
Expert 3 0.54 0.65
Expert 4 0.40 0.51
Expert 5 0.44 0.64
Expert 6 0.44 0.58
Expert 7 0.45 0.61
Expert 8 0.48 0.51
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2.2. Initial testing

A chief concern for crowdsourcing, especially citizen science, is
building a reliable userbase, either through accessing pre-existing
groups of users or attracting users through social media and community
engagement. Since we desired to annotate a large, fully manually-
picked particle set, we hosted our experiment on an established
crowdsourcing platform, Panoptes, a Zooniverse-run initiative for ci-
tizen science projects.

Initial testing for the crowdsourcing system was performed by paid
workers recruited through Amazon Mechanical Turk (AMT). Workers
were recruited, trained, and paid through AMT, while Panoptes hosted
the particle selection tasks and stored the results (Fig. 1).

Testing produced 16,562 particles chosen by 42 unique workers
using the same set of 190 images in the gold standard. Based off of
feedback from AMT workers, additional instructions, shown in (Fig.
S2), were added to the picking interface.

Importantly, this initial testing was used to determine the optimal
number of people to assign to each image, as well as to establish a
voting mechanism. To this end, at least 10 workers annotated each
micrograph and accuracy statistics were derived for randomized subsets
of those workers using various voting thresholds (Fig. 2a). Limited re-
turns after five annotators at union led to the choosing of this threshold
as optimal; in all subsequent experiments, each image was shown to
five annotators and the “crowd” output was defined as the union of
users’ annotations.

2.3. Zooniverse

After testing in Amazon Mechanical Turk, the project, dubbed
Microscopy Masters, was launched on Panoptes in March 2016. A total
dataset of 209,696 particle picks was produced over a year from 3,446
micrographs, with 2,108 unique volunteers. The parameters established
in our initial testing were utilized, with each image being classified by
five different users and the ’voting threshold’ set to one, meaning the
total union of all classifications performed on an image were used to
generate the final data set of picks. For individual users, we observed a
marked decrease in F-score and recall in the Zooniverse set, as shown in
Fig. 2, which we attributed to differing incentives between paid testing
on AMT and unpaid volunteers on Zooniverse. In particular, the number
of particles selected in each image by Zooniverse volunteers is highly
variable; a peak at zero in the distribution of particles picked per-user
per-image resulted in a corresponding peak at zero for recall and F-
score, as well as a peak at one for precision (Fig. 2b). Association of low
recall and low-cardinality annotations implied a body of “low-effort”
annotations, where a user did not fully complete the image before
submission. Aggregation of the five user annotations per image miti-
gated the low individual accuracy, yielding an average aggregate F-
score comparable to that of the AMT-annotated data, as shown in
(Fig. 2d).

Average agreement between the voted crowd annotations and in-
dividual expert annotations was found to be slightly less than inter-
expert agreement, with the mean for inter-expert agreement at 0.45 and
mean between the crowd and experts at 0.40 (Fig. 3).

2.4. Reconstruction

Refinement of the proteasome lid complex structure was performed
using the crowdsourced dataset collected through Zooniverse, as well as
the dataset used in Dambacher et al., which was picked using a tem-
plate-based method (Dambacher et al., 2016). Since the resolution of a
refined single-particle reconstruction generally correlates with the
number of particles in the dataset, a reconstruction was also generated
using a random subset of the template-picked particles with the same
cardinality as the crowdsourced data, called the ‘normalized template’
set (Cheng, 2015). Particle stacks were extracted from the micrographs,
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