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A B S T R A C T

Computational protein design is a set of procedures for computing amino acid sequences that will fold into a
specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective
identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) si-
mulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta
design is started on MD-derived structural ensembles and showed that such a combined approach generates
20–30% more diverse sequences than currently available methods with only a slight increase in computation
time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences
assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also ap-
plicable to de novo design tasks started from backbone structures without any sequence information. In addition,
we implemented a protocol that can be used to assess the stability of designed models and to select the best
candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible
backbone design can be a viable method for protein design, especially for tasks that require a large pool of
diverse sequences.

1. Introduction

Computational protein design is a fast-growing field of structural
bioinformatics (Huang et al., 2016; Lupas, 2014), including not only the
creation of entirely new protein structures (Bhardwaj et al., 2016), but
also new functions (Burton et al., 2016; Joh et al., 2014). Two key
aspects of design are: 1) defining initial backbones and 2) calculating
sequences that will fold to their structures. The backbones can be ob-
tained from known structures, parametric equations (Boyken et al.,
2016; Lupas et al., 2017) or assemblies of short peptide fragments.
Given the essentially infinite number of amino acids combinations in a
protein chain of typical length, the problem of sequence calculation is
usually solved with the aid of heuristic algorithms, such as Monte Carlo
optimization implemented in Rosetta Design. In a typical scenario,
design procedure is started for a thousand of times on a single backbone
structure to calculate a diverse set of suboptimal sequences. The main
criterion in selecting the best designs for further experimental valida-
tion is the score provided by the Rosetta energy function. Models can
subsequently be filtered according to the packing quality (Sheffler and
Baker, 2009), hydrogen bonding patterns (Boyken et al., 2016), fold-
ability (Bhardwaj et al., 2016; Murphy et al., 2012) and stability in

molecular dynamics simulations (Bhardwaj et al., 2016).
Considering the dynamic nature of a protein structure is essential

for a successful design as it allows for the accommodation of the side-
chains that would be otherwise rejected by the energy function, e.g. due
to the steric hindrances. Within the Rosetta environment, backbone
flexibility can be achieved by iteratively repeating sequence design on a
fixed backbone and full-atom relaxation (design and relax protocol; D&
R). Alternatively, flexibility can be simulated through multiple parallel
design simulations on an ensemble of relatively similar (1–2 Å RMSD)
initial backbones. Such backbone ensembles can be generated based on
simulations of full-atom or backbone structures (Rosetta Backrub pro-
tocol (Davis et al., 2006) or KIC (Mandell et al., 2009), respectively),
parametric equations (Boyken et al., 2016), or the homologous struc-
tures available in the PDB database (Sun and Kim, 2017). Flexible
backbone design approaches provide better sampling of the sequence
space and generate more diverse sequences thus increasing the chances
of identifying highly-designable backbones, for which a substantial
number of high-scoring sequences can be designed. For this reason,
flexible backbone design is routinely applied to various design tasks
such as de novo design, re-design of a known folds (Murphy et al.,
2012), probing the designability (Szczepaniak et al., 2014), or testing
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the mutational robustness (Humphris-Narayanan et al., 2012).
Given the number of various flexible and fixed backbone design

approaches, it is essential to define a benchmark procedure to compare
them in an accurate way. A straightforward bioinformatics method to
assess the quality of the designs was proposed by Kortemme and co-
workers (Ó Conchúir et al., 2015; Ollikainen and Kortemme, 2013) in
which each design method was initialized on a representative set of
experimentally-determined protein structures and the resulting de-
signed sequences were compared to natural sequences (homologs of a
given structure). The comparisons were made in terms of sequence
profile similarity, which measures the agreement between the posi-
tional probabilities of occurrence of the amino acids and covariation
similarity, where the emphasis is put on the overlap between the se-
quence covariation patterns. The covariation similarity coefficient is an
especially important metric, as it reflects sequence features resulting
from the interactions critical for structural stability. Another important
parameter is the sequence entropy, which quantifies the diversity of the
sequences. Comparison of designed and natural sequences allows to
check whether sequence constraints imposed by the input backbone are
fulfilled in a similar way by the computational design and the natural
selection. Design procedures that yield sequences with the most nat-
ural-like properties are assumed to be best-performing.

MD simulations provide an opportunity to describe the heterogeneity
of a protein structure, depicting it as an ensemble of the physically possible
conformations rather than as a single, unique state. Various applications of
MD simulations in protein design were recently reviewed (Childers and
Daggett, 2017) and include, but are not limited to, the guidance of the
stability improvement (Alfarano et al., 2012; Joo et al., 2011), design or
re-design of proteins functional sites (Liang et al., 2009; Privett et al.,
2012), and evaluation or ranking of the models (Bhardwaj et al., 2016;
Kiss et al., 2013, 2010). Additionally, the iterative MD-Rosetta protocol
was recently found to significantly improve the quality of Cryo-EM models
(Leelananda and Lindert, 2017; Lindert and McCammon, 2015). Another
straightforward application of MD simulations in protein design is mod-
eling of the backbone flexibility by generation of the structural ensembles
that can be used as a starting point for design simulations (Babor et al.,
2011; Fu et al., 2007; Li et al., 2009; Schenkelberg and Bystroff, 2016; Sun
et al., 2016). So far, to the best of the authors knowledge, the MD-based
design procedures have not been systematically benchmarked. This has
become increasingly important with the advent of GPU computing, as MD
simulations have become more accessible to the community, providing
performances comparable to large CPU clusters, achievable on a handful
of graphic units (Nobile et al., 2016; Salomon-Ferrer et al., 2013).

We assessed the applicability of MD simulations in sequence design
using Rosetta and benchmarked various design procedures (Fig. 1,
Table 1.). It is to be expected that ensembles generated based on full-atom
structures may tend to yield more native-like sequences when used for
design. Therefore, we benchmarked design protocols starting either from
full-atom structures (Fig. 1A) or from backbone structures (Fig. 1B). Since
neither MD nor other ensemble generation methods such as Backrub can
be executed directly on backbone structures, for the second scenario we
implemented a two-step protocol in which a preliminary design is per-
formed to generate full-atom structures that are subsequently used as an
input to MD or Backrub. In our study, we adhered to the previously de-
scribed design quality assessment procedure (Ó Conchúir et al., 2015) with
some modifications described in the Methods section. Altogether, we
tested 10 different design pipelines and found that the best results were
obtained with the Rosetta design and relax protocol started on the back-
bone ensembles obtained by clustering of the MD trajectories. Moreover,
we discuss the applicability of MD in the process of model selection.

2. Methods

2.1. Overview

To assess the applicability of MD-generated backbone

conformational ensembles for protein design, we selected 12 Pfam
domains together with their representative PDB structures and multiple
sequence alignments (Table 2; the structures were selected to represent
all major structural classes). The structural backbone ensembles were
generated from 200 ns all-atom MD simulations of the 12 PDB struc-
tures and then extracting 500 representative backbone conformations
from each trajectory (Fig. 1A). 500 independent Backrub simulations on
the same set of PDB structures were also performed for comparison.
Each of the ensembles (generated with either MD or with Backrub)
served as a starting point for the design of 25,000 sequences (500 se-
quences per backbone conformation). In addition, for each of the 12
structures 25,000 sequences were designed using only the PDB struc-
ture (the ensemble generation step was omitted). The Rosetta sequence
design was started in two modes: (a) a fixed backbone (FixBB) protocol
(Kuhlman et al., 2003), which utilizes the simulated annealing ap-
proach to optimize the side-chain rotamers, while holding the backbone
fixed and (b) a design and relax protocol (Murphy et al., 2012), where
the cycles of the fixed backbone design and full-atom (side-chains and
backbone) optimization are repeated iteratively. To benchmark the
applicability of MD and Backrub for the design starting from backbone-
only structures (de novo design) we included an additional sequence
design step with a D&R protocol and selected 25 top-scoring models for
the subsequent ensemble generation with either MD or Backrub (see
Fig. 1B and the “Backbone ensemble generation from a single backbone
structure” section). All relevant commands used to run Rosetta calcu-
lations are available in Supplementary File 3.

Fig. 1. Overview of the computational pipelines used in the study. The design was started
either from (A) full-atom or (B) backbone structures. Dashed lines indicate the stages at
which the combined clustering of MD trajectories is performed.

Table 1
Design protocols benchmarked in the study. IDs and names are used throughout the text
to identify the individual protocols. Input, ensemble generation, and design protocol
denote type of input structure, method for ensemble generation, and design method,
respectively.

ID Name Input Ensemble generation Design protocol

F1 FixBB Full-atom None FixBB
F2 FixBB+MD Full-atom MD FixBB
F3 FixBB+BR Full-atom BR FixBB
F4 D&R Full-atom None D&R
F5 D&R+MD Full-atom MD D&R
F6 D&R+BR Full-atom BR D&R
F7 D&R+MD+BR Full-atom MD+BR D&R
B5 D&R+MD Backbone MD D&R
B6 D&R+BR Backbone DR D&R
B7 D&R+MD+BR Backbone MD+BR D&R
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