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Abstract

The purpose of this numerical work is focused on the dynamics of a stably stratified inclined mixing layer. Both effects, stratifi-

cation and slope, are considered through relevant flow parameters. Chebyshev’s approximations and Direct Numerical Simulation

(DNS) are used in the context of linear stability analysis for different Richardson numbers and slopes. Two-dimensional temporal

and spatial simulations are employed to examine baroclinic layer and the evolution of primary and secondary Kelvin-Helmholtz

instabilities. In three-dimensional configuration, only stratification effects are considered. The numerical results show persistence

of the translative instability with formation of intense longitudinal vortices highly influenced by the Richardson number.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Stratified mixing layers develop in the interface of two parallel streams of fluid moving with different velocities and

densities. This kind of flows is often found in nature, such as in the atmosphere due to interaction among air currents

or in the mixing between fresh and salt water. The buoyancy effect reduces the perturbation growth rate while the

slope effect, for instance, due to topographical features, accelerates the developing of instabilities. The competition

between both mechanisms results in various types of instabilities depending on mixing layer density difference and

inclination. Thus, the transition to turbulence is governed by the competition between inertial and buoyancy forces,

which strongly affect the mixing layer longitudinal spreading growth. Previous results of this kind of flows were

obtained through laboratory experiments (Browand & Latigo1 1979, Thorpe15 1987), using linear stability analysis

(Hazel3 1972, Negretti et al. 10 2008), or by numerical simulations (Staquet14 2001, Smyth12 2003, Martinez et al. 9

2007), among others.

The main objective of this numerical work is to study the stratification and slope influence in stably stratified

mixing layers. Direct numerical simulation (DNS) and Chebyshev’s approximations are used to quantify the temporal
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amplification of perturbations of linear problems. For spatially-developing simulations, 2D and 3D configuration

domains are considered to follow the spatial evolution of primary and secondary instabilities and three-dimensional

vortex structures.

2. Governing equations

The fluid motion governing equations are: continuity, Navier-Stokes in the Boussinesq approximation, and mass

transport. In dimensionless, they are stated as,

�∇ · �u = 0,
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+
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where �u = (u, v,w) is the velocity field, �eθ = (sin θ, −cos θ, 0) with the slope given by θ (Fig. 1a), Π is the

modified pressure field, and ρ the density. The reference parameters are half velocity difference (U = (U1 − U2)/2),

initial vorticity thickness (δi = 2U/|∂u/∂y|t=0,y=0) and density reference (ρ0). The Reynolds number, bulk Richardson

number and Prandtl number are defined, respectively, by Re = Uδi/ν, Ri = gΔρδi/(2ρ0U2) and Pr = ν/κ, where g is

the gravitational acceleration, Δρ the density difference, ν the kinematic viscosity and κ the molecular diffusivity.

To perform linear stability analysis, the normal modes method is employed. The non-dimensional governing linear

stability equation is given by
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where u(y), ρ(y) are the base velocity and density profiles, subscripts y and yy denote differentiation with respect to the

vertical direction, respectively, φ is the complex disturbance amplitude, α = αr is the wave-number, c = ω/α = cr+ jci

is the complex wave speed, and the amplification rate is defined by ωi = αrci. Density diffusion and viscous term

have been neglected for Eq. (2) development.

3. Initial and boundary conditions

The velocity and density base profiles are given by

u(x, y, z, t) = UC − U tanh
(

2y
δi

)
, v(x, y, z, t) = w(x, y, z, t) = 0, ρ(x, y, z, t) = − tanh

(
2y
δρ

)
, (3)

where δρ represents the initial density thickness and x, y and z are the streamwise, vertical and spanwise directions,

respectively. For temporal simulations, the convection velocity is UC = 0 and initial conditions are u = u(x, y, t = 0),

ρ = ρ(x, y, t = 0). Sinusoidal perturbation field (u′0, v
′
0) of maximum amplitude Af is added to the base velocity profile.

Boundary conditions are periodic at x = 0 and x = Lx, and free-slip at y = ±Ly/2. For spatially-developing mixing

layers, the boundary conditions are u = u(x = 0, y, z, t), ρ = ρ(x = 0, y, z, t), U1 = 3U, U2 = U and UC = (U1 + U2)/2
(Fig. 1a). In the inflow boundary condition, the velocity and density profiles (Eq. 3) are used while at the outlet, an

outflow boundary condition,
∂ϕ
∂t + UC

∂ϕ
∂x = 0 is solved where ϕ represents u,v or ρ.

4. Numerical methods

The governing equations (Eq. 1) are solved numerically using the computational code5, which is

based on compact sixth-order finite difference schemes for spatial differentiation and a second-order Adams-Bashforth

scheme for time integration. To treat the incompressibility condition, a fractional step method requires to solve a

Poisson equation. This equation is fully solved in spectral space via the use of relevant Fast Fourier Transforms.

For three-dimensional simulations, a parallel version of the computational code based on a powerful 2D domain

decomposition method is used6. The linear stability equation, Eq. (2), is solved via Chebyshev’s approximations.



Download English Version:

https://daneshyari.com/en/article/864820

Download Persian Version:

https://daneshyari.com/article/864820

Daneshyari.com

https://daneshyari.com/en/article/864820
https://daneshyari.com/article/864820
https://daneshyari.com

