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A B S T R A C T

Structure determination of helical specimens commonly requires datasets from thousands of micrographs often
obtained by automated cryo-EM data acquisition. Interactive tracing of helical assemblies from such a number of
micrographs is labor-intense and time-consuming. Here, we introduce an automated tracing tool MicHelixTrace
that precisely locates helix traces from micrographs of rigid as well as very flexible helical assemblies with small
numbers of false positives. The computer program is fast and has low computational requirements. In addition to
helix coordinates required for a subsequent helical reconstruction work-flow, we determine the persistence
length of the polymer ensemble. This information provides a useful measure to characterize mechanical prop-
erties of helical assemblies and to evaluate the potential for high-resolution structure determination.

1. Introduction

Visualization of biological macromolecules by electron cryo-micro-
scopy (cryo-EM) is one of the best suited methods to study the three-
dimensional (3D) structure of large assemblies. Highly symmetrical
assemblies, in particular helical structures, have been critical to es-
tablish methodology of 3D image reconstruction (DeRosier and Klug,
1968) as well as for further developments for high-resolution structure
determination (Beroukhim and Unwin, 1997; Fromm et al., 2015; Ge
and Zhou, 2011; Sachse et al., 2007; Yonekura et al., 2003). In addition,
large helical assemblies constitute a fundamental architectural building
principle in biology found in cytoskeletal proteins, viral capsids, en-
zymes, amyloid fibrils, membrane-remodeling and signaling complexes
(Frost et al., 2008; Hirose et al., 1996; Lynch et al., 2017; Moore et al.,
1970; Sachse et al., 2008; Wu et al., 2014), recently reviewed (Sachse,
2015). As new structures of helical assemblies are determined, new
functional roles are being discovered in various processes of the cell
(Ciuffa et al., 2015; McCullough et al., 2015). With improved hardware
and software near-atomic resolution structures of these assemblies are
increasingly common and critical to reveal the structural basis of the
underlying assembly mechanism.

One of the main reasons for the improved performance of cryo-EM
structure determination were due to hardware developments. First,
direct electron detectors with improved detective quantum efficiency
(DQE) and frame readout gave rise to images of much improved quality
(McMullan et al., 2009; 2016). Second, microscopes of improved sta-
bility with software-assisted automation are now commonly used to
generate 1000 s of micrographs from a single sample (Biyani et al.,

2017; Mastronarde, 2005; Suloway et al., 2005). Another important
advance comes from software improvements and high-performance
computing that have reduced user interference and made large-scale
image processing on high-performance computing architectures fea-
sible over the last decades (Desfosses et al., 2014; Frank et al., 1996;
Grigorieff, 2007; Ludtke et al., 1999; Scheres, 2012; Sorzano et al.,
2004; Tang et al., 2007). In order to obtain near-atomic resolution in
most cases 100,000 s of asymmetric molecular units need to be ana-
lyzed before averaging. Whereas for single particles a plenitude of semi-
automated or fully automated procedures exist, for helical specimens
most of the specimens are digitally excised by a user-guided interactive
cropping procedure (Ludtke et al., 1999; Tang et al., 2007) before he-
lices are being segmented into a stack of single particles. Although this
process generates helical data sets of high confidence, it is labor-intense
and time-consuming and can often take days for large data sets before
image processing can be initiated.

The need for automated particle detection on micrographs from
negative stain had been realized in the early 1980s (Frank and
Wagenknecht, 1983) and since then many approaches for single particle
detection have been introduced. Particle detection from cryo-micro-
graphs is even more demanding due to the poorer signal-to-noise ratio.
Multiple algorithms have been put forward to address this technical
challenge. The proposed approaches rely on principles of template
matching by reference-based cross-correlation (Roseman, 2003), pat-
tern recognition (Zhu et al., 2003), edge detection (Harauz and Fong-
Lochovsky, 1989) and other types of intensity measures reviewed by
Glaeser and colleagues (Nicholson and Glaeser, 2001). More recently,
deep learning algorithms based on neuronal networks have been added
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to the repertoire of techniques used for particle detection (Wang et al.,
2016; Zhu et al., 2017). The principle goal of the particle picking
workflow can be summarized as follows: to precisely locate the particle
while avoiding to recognize noise or contaminants. In most cases, ad-
ditional pruning is required either by a human operator or other means.
For this reason, many programs are semi-automated such that they
include a user GUI and require a final step of human intervention
(Frank et al., 1996; Ludtke et al., 1999; Scheres, 2015; Tang et al.,
2007).

For helical specimens, there are very few automated approaches
known to date suited for fully automated or semi-automated selection
of filamentous or elongated helical assemblies. One of the earliest ap-
proaches was developed by combining near and far-to-focus images to
trace the central helical axis using the helix contours segmented by a
Canny edge detector (Zhu et al., 2001). Although particularly useful for
images of wide and rigid specimens such as tobacco mosaic virus
(TMV), such approaches are operationally challenging due to dual
image acquisition and it is more difficult to recognize thinner filaments
with less molecular mass. In the past, the majority of helical assemblies
were still excised interactively as relatively few high-quality images
were sufficient to compute 3D maps of helical assemblies (Yonekura
et al., 2003). With the introduction of single-particle image processing
to helical reconstruction (Egelman, 2000; Jiménez et al., 1999), more
flexible and heterogeneous helical structures became amenable to 3D
image reconstruction. Therefore, classification methods originally de-
veloped for single-particle image processing algorithms could be di-
rectly applied to helical structures (Behrmann et al., 2012; Desfosses
et al., 2014; Wang et al., 2006). More recently, the maximum-likelihood
based RELION software (Scheres, 2012) has been adapted to work with
helical structures. Based on the single-particle framework an adapted
semi-automated helix detection workflow has become available (He
and Scheres, 2017). Once the helical axis has been determined on the
micrograph, the segments can be extracted and subjected to the re-
spective image processing pipeline. In addition, traces of elongated
specimens can also be used to assess material properties on the rigidity
and flexibility of the examined structures (Sachse et al., 2010; Wang
et al., 2002). For high-resolution and lower-level structural character-
ization a fast implementation is essential to reliably trace elongated
assemblies while minimizing human intervention.

In the current manuscript, we introduce a robust micrograph-based
helix tracing (MicHelixTrace) algorithm that automatically detects he-
lical specimens based on a reference image. Computational cost is
minimized by a reduced search separating estimation of rotational and
translational parameters for helical specimens in Fourier and real space
domain respectively. The resulting cross-correlation map is thresholded
and helix coordinates are extracted from binarized skeletons. We de-
monstrate that the approach is successful for rigid assemblies of TMV,
thin cytoskeletal ParM filaments as well as flexible p62-PB1 filaments.
In addition to helix coordinates, the introduced automated tracing ap-
proach also determines fundamental material properties in the form of
persistence length for helical structures. The automated helix detection
algorithm MicHelixTrace provides a computationally fast implementa-
tion for faithful tracing of helical assemblies from electron cryo-mi-
crographs with minimized human intervention.

2. Principle of the approach

One of the most successful approaches to automatically detect single
particles from a reference image is based on the local cross-correlation
function (Chen and Grigorieff, 2007; Roseman, 2003; Scheres, 2015),
which yields the x and y positions of the particles on the micrograph. In
contrast, helical assemblies are long entities that extend continuously
for more than 500 Å in one direction. Consequently, their location de-
scription can be reduced to a trace with start and end coordinate pairs
only when they resemble a line or by a set of equidistant segment co-
ordinates when the helical axis deviates from a straight line (Fig. 1).

Computing complete local correlation functions for every possible lo-
cation on the micrograph is computationally demanding. In order to
estimate end, start and segment coordinates of a continuous helix,
computing a much smaller subset of the local correlation function is
sufficient. For this purpose, we subdivided the micrograph into tiles
with 80% overlap along x and y to match the provided reference image
(Fig. 2A). Tiles of 350–500 Å dimension bear the advantage that the
helical axis can be approximated as a line within this window even
though for larger dimensions the polymer deviates from a straight line.
The path of the helix within the tile can be explained by the in-plane
angle θ and the normal distance or shift relative to the tile center Δ
(Fig. 2B/C). To determine θ and Δ, an exhaustive search could be em-
ployed to further localize the helix within the window using a multi-
dimensional cross-correlation (cc) function. In order to cut down on the
computational cost of this search, we separate the in-plane rotation θ
from the positional Δ search. Due to their symmetry, helical specimens
possess layer lines in the Fourier domain. As the amplitude spectrum is
invariant to translation of the object in real space, we can reliably de-
termine the rotation θ by a rotational correlation function directly from
the power spectra of the tile and the reference. According to the de-
termined helix angle, we then rotate the tile and compute only one
correlation function to determine the shift relative to the tile center Δ
including a cc-score. As a result of the procedure, the θ/Δ pair and a
normalized cc-score is obtained for every tile.

Based on the determined θ and Δ values of each tile, cc-scores can be
mapped back on the micrograph with much higher precision than the
initial coarse tiling (Fig. 3A). The resulting micrograph map exhibits
high correlation for paths where the reference is present and shows
small correlations where the reference is absent. In the next step, the
cross-correlation map requires thresholding to reliably extract the he-
lical paths. For this purpose, we evaluated the background correlation
distribution in a histogram and found that it follows an exponential
distribution for areas devoid of helices (Fig. 3B). Only few high corre-
lation values represent the paths of the helices, which are above the null
distribution visible in a tail of the histogram. After fitting the null
distribution and estimation of the tail threshold, we binarize the cor-
relation map. Subsequently, the paths are skeletonized to single pixels
by a morphological thinning procedure (Fig. 3C) (Lam et al., 1992).
Overlapping paths can be identified as branch points by a feature-spe-
cific response filter (Olsen et al., 2011). Once thinned to single pixel
paths, branch points can only occur in a limited set of pixel config-
urations that can be located by a precomputed convolution response
(Supplementary Fig. 1). Subsequently, overlapping helices are split into
separate helices (Fig. 3D). Finally, helices shorter than a user-defined
minimum helix length parameter are discarded as they often corre-
spond to contaminations and non-helical protein, for example ag-
gregates (Fig. 3E). Longer helices are broken up into pieces of com-
parable size and the remaining traces are fitted by a 1st to 3rd order
polynomial function to yield a set of equidistant segment coordinates
including the start and end points of the helix (Fig. 3F). In a final
pruning step, we evaluate the determined traces with respect to
straightness of the helix population from the micrograph set. As thermal
helix trace fluctuation is determined by their inherent material prop-
erties, helices outside the expected distribution should not correspond
to the targeted assemblies. In fact, they are often kinked helices un-
suitable for helical reconstruction or represent false positive hits, e.g.
contamination perhaps of elongated shape, which is erroneously de-
tected as a helix (Fig. 3G). After the final straightness analysis, we can
eliminate those helices that do not match the expected straightness
range.

3. Implementation

3.1. Preprocessing of the micrograph into tiles

In order to locate the helical axis of the filament within the
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