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This paper discusses the problem of whether creating a matrix with all the character state combinations that
have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with
maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary char-
acters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or
most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This de-

pendence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the
character changes on the tree used to select character state distributions. The present finding allows creating
matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable,
and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack
of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees.

1. Introduction

This paper explores the problem of whether all (or some) of the
possible character state distributions with different numbers of steps on
a given tree, produce a matrix for which that tree is the unique most
parsimonious or likely tree. The results shed some additional light on
problems recently discussed by Radel et al. (2013) and Goloboff (2014),
connects to results of Goloboff (1991) and Steel and Charleston (1995),
and illustrates both similarities and differences between two important
criteria for phylogenetic reconstruction, maximum parsimony (MP) and
maximum likelihood (ML).

The most common type of discrete morphological character are
binary characters. This paper is primarily concerned with discrete
binary data, for which it is easier to establish conclusions; discussion of
DNA sequence data is included at the end. While ML methods are most
commonly used for DNA sequence data, and discrete morphological
characters are usually analyzed with parsimony, the Mkv model (Lewis,
2001) is being used increasingly for ML analysis of morphological data,
and is implemented in recent releases of MrBayes (Ronquist et al.,
2012) and PAUP* (Swofford, 2002). Thus, the behaviour of the Mkv
model is studied also for the categorical (binary) datasets. Our main
finding is that it is possible to univocally define any phylogenetic tree
(both under ML and MP) by using characters with much larger amounts
of homoplasy than allowed by previous methods to generate datasets
with known optimal trees (e.g., Chai and Housworth, 2011).
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2. Matrices with all s-step combinations

For any binary tree T with t leaves, there is a number n of ways to
assign states to the terminal branches such that the resulting character
has a number s of steps. For binary characters, this number n does not
depend on the shape of T, only on t and s (see formula in Steel and
Charleston, 1995: 370). Let My, be the matrix with a copy of every
possible character-state distribution with exactly s steps on tree T; de-
fine My, analogously, but for extra steps e instead of absolute steps s.
Note that in non-constant binary characters e =s—1, so that
Mr =1 = Mr .=, but this does not hold for 3 or more states. Let P and L
be respectively the (set of) most parsimonious and likely tree(s) for the
set of characters in question.

It is well known that (for binary characters and any value of t), when
s = 1, then P equals T: My s, is the Baum-Ragan “matrix-representation
with parsimony” (or MRP) of tree T (Baum, 1992; Ragan, 1992). For the
MRP, T is also the unique most likely tree L, under the Mkv model of
Lewis (2001; in this paper, all the ML Mkv analyses were carried out
with PAUP*, vers. 4.0al51, with I[set nstates = mky mkstate-
space = fixed).

The problem of whether T can be uniquely retrieved from the matrix
My swhen s > 1 has not been so far considered in the literature. That is,
the problem of whether T=P, T# P, or T C P (i.e. T is a most parsi-
monious tree, but not the only one, so that My does not univocally
define P). In the case of t = 4, it is easy to verify that for My ;_,, P # T
for any topology T. The length of T in that case is ns = 4 (2 characters of
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Table 1
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Results of maximum parsimony (MP) analysis for matrices containing all the possible binary character with different numbers s of steps for each of the tree-shapes, for different numbers
of taxa. Cases where the matrix for every tree-shape produces the same tree T as single most parsimonous tree P (i.e. T = P) are indicated with +; cases where every one of the shapes
produces most parsimonious trees different from T are indicated with a dash (-). In the rest of cases, the number of shapes for which T = P is indicated first, followed by the number of
shapes where T is one among multiple equally parsimonious trees, ending with the number of shapes where T is not a most parsimonious for the corresponding matrix. Cases marked as

(*) were checked with a random sample of 200 shapes instead of exhaustively.

TAXA s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9
4 —

5 —

6 — —

7 0,3,3 -

8 10,0,1 - —

9 + -

10 + - - -

11 + 80,3,15 - -

12 + + - - -

13 + + - - - -

14 + + 813,0,170 - - -

15 + + - - -

16 + + + - - - -

17 + + + 8911,0,1994 - - -

18 + + + + - - - -
19 + + + + - - - -
20 + + + + 102676,0,25236 ) —(*) )

2 steps each), but the length of P is 3 (i.e. there are two most parsi-
monious trees, where one of the two characters perfectly matches a
group).

For the case of My -, and t = 5, predicting whether T = P is harder.
A simple TNT script (testequality.run, available as Supplementary
Material) can be used to generate the matrix M, for each of the tree-
shapes (2 in the case of t = 5), and check whether T = P. The results are
shown in Table 1. While the number n of binary characters with s steps
does not depend on the shape of T, whether T = P may well depend on
the shape (see Felsenstein, 2004: 29-32 for a general discussion of
rooted tree-shapes, and Goloboff et al., 2017 for a recent application).
However, the equality between T and P will hold (or not), for every one
of the trees of a given shape, thus simplifying the task of checking
whether T = P for each of the possible trees for t taxa —it is only ne-
cessary to check every tree-shape, not every tree (specially convenient,
since the number of shapes is vastly smaller than the number of possible
tree topologies; see, e.g. Felsenstein, 2004: 30, Table 3.3). The script
used for this paper automatically generates My ; for each of the relevant
tree-shapes for t taxa and checks whether T = P, using TNT (Goloboff
et al., 2008; Goloboff and Catalano, 2016) to find P. The script gen-
erates all the rooted shapes for t—1 taxa, since TNT always uses one of
the taxa as root or outgroup; rooting the trees differently would change
neither the MP nor ML scores. For both tree-shapes for t = 5 and s = 2,
T#P.

Is it possible that T = P, for some number t, and s = 2? As t increases
to 8, then for 10 of the 11 possible tree-shapes, T = P. For the 11th
shape (the shape that results from rooting the fully symmetrical 8-taxon
tree in one of the terminal taxa), T # P. This shows that it is indeed
possible for P to be identical to T for some shapes, and different for
others. For t > 9 and s = 2, it can be verified that T = P for every tree-
shape.

What about larger values of s? The number of steps a binary char-
acter can have on a most-parsimonious reconstruction is bounded by
the number of Os and 1s (whichever is minimum; the maximum number
of steps an MP reconstruction can have is the integer é). Thus, only for
t > 6 there are some characters with s = 3. For t = 6 to t = 10, and
s =3, T#P. For t =11, some tree-shapes produce MRP matrices for
which T = P, but others produce matrices where T is not a shortest tree
(i.e. T # P) or where T is simply one of multiple MPTs (i.e. T C P) (see
Table 1). When s = 3, T = P for every possible tree-shape only if t > 12.

The previous case, s = 3, fulfilled the condition of T = P for every
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possible tree-shape for all cases where s < 0.25¢. For larger values of t
and s, it can be verified that the same is true; for example, My ;—s when
t = 20 fulfills the condition that T = P for every tree T, despite the fact
that all the characters have significant amounts of homoplasy. The only
exception to the relationship s < 0.25¢ is the case of t = 8, where one of
the 11 shapes does not fulfill T = P. Some cases where s > 0.25¢ have
some shapes producing a matrix Mr ¢ for which T is a most parsimo-
nious tree (i.e. T C P when s > 0.25t), but there is no case where
s > 0.3tfor which T is a most parsimonious tree (i.e. T # P for all cases
of s > 0.3t).

For t > 20, exhaustively checking whether all tree-shapes fulfill the
condition that T = P becomes difficult. First, the script works by gen-
erating all possible binary state distributions (2'~1, given that the root
only has 0 states), and for s = 6, T could be expected to equal P for all
shapes only when t > 24-this requires generating matrices with
8,388,608 characters or more. Second, the number of shapes also in-
creases rapidly; for t = 24, the number of shapes is 3,626,149, and the
990,080 characters with 6 steps on each of those shapes would have to
be identified (deactivating the rest), followed by a search for P. Taking
samples of the shapes, for t up to 28 (the maximum matrix size we could
handle with TNT), suggests that the same relationship between t and s
(i.e. s < 0.25¢t) continues being valid for T to be equivalent to P.

The same bounds seem to hold for ML under the Mkv model, re-
garding the most likely tree L (i.e. T = L for all trees when s < 0.25¢,
and T # L for all trees when s > 0.3t). When 0.25 < s < 0.3, the cases
where T # L or T C L seem to be more common than the cases where
T # P or T C P; there are, however, some cases where T # P or T C P
while T = L.

Note that, for these matrices, application of implied weighting
(which downweights characters with more homoplasy; Goloboff, 1993),
is guaranteed to produce exactly the same results as equal weights MP,
given that all the characters have the same homoplasy.

3. Undecisive matrices

Of course, adding possible binary state distributions with fewer
steps than 0.25¢ also produces matrices where T=P and T = L.
However, adding those possible characters does not make it possible to
also add at the same time characters with s > 0.25¢ and still have T = P.
In the end, if all the characters @ <,s, < ,%) are included in the ma-
trix, the matrix becomes completely undecisive (Goloboff, 1991): every
possible partition of the data is represented exactly once, and thus every
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