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Abstract

We investigate a weakly nonlinear equation that arises in the modelling of wave dynamics on a liquid film flowing down an

inclined plane when a turbulent gas flows above it. The model is the Kuramoto-Sivashinsky equation with an additional non-local

term multiplied by a parameter representing the relative importance of the turbulent gas. The non-local term has a dispersive

effect, destabilising effect on long waves and stabilising or destabilising effect on short waves depending on whether the gas

flows downwards or upwards. We investigate the influence of this term on the dynamics of the Kuramoto-Sivashinsky equation by

extensive numerical experiments. When the gas parameter is sufficiently large, the solution evolves into a row of weakly interacting

pulses.
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1. Introduction

Gas-liquid flows occur both in nature and in numerous technological applications such as chemical reactors, cool-

ing systems and evaporators. Here we consider a liquid film that flows down a lower wall of an inclined channel

under the action of gravity and with a counter-current turbulent gas flowing above the liquid film. Counter-current

gas-liquid flows have been actively studied both experimentally and theoretically starting from the experiments of

Semyonov [1], who analysed counter-current flows of water liquid films and air in glass tubes. He found that such

flows are characterised by various interesting phenomena of which the most interesting one is the so-called flooding

phenomenon: as the gas flow rate is increased, the amplitude of the interfacial waves grows very rapidly before the

complete flow reversal.

Other experimental works on counter-current gas-liquid flows include those in Refs. [2,3,4,5,6,7,8,9,10,11,12,13].

As a result of these studies, there have appeared a number of empirical relations that attempt to express the gas velocity

at which flooding occurs as a function of physical properties of the gas and the liquid and the geometrical properties of

the channel. Theoretical investigations of flooding include works by Shearer and Davidson [14], Guguchkin et al. [15],

Demekhin [16], Jurman and McCready [17], Peng et al. [18]. Trifonov [19,20,21] used an approach in which, under

appropriate conditions, the gas problem can be solved independently of the problem for the liquid film following the

studies of Miles [22] and Benjamin [23]. Trifonov then analysed the problem for the liquid film using full Navier-

Stokes equations. Recently, Tseluiko and Kalliadasis [24] and Vellingiri et al. [25] adopted an approach similar to

that of Trifonov, but with a more accurate model for the gas phase (which gives significantly better agreement with

Email addresses: t.lin@lboro.ac.uk (Te-Sheng Lin), d.tseluiko@lboro.ac.uk (Dmitri Tseluiko),

s.kalliadasis@imperial.ac.uk (Serafim Kalliadasis)

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of scientific committee of Nonlinear Interfacial Wave Phenomena from the 
Micro- to the Macro-Scale

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


99 Te-Sheng Lin et al.  /  Procedia IUTAM   11  ( 2014 )  98 – 109 

experimental studies of e.g. Thorsness et al. [26] and Zilker et al. [27]) and derived a low-dimensional integral-

boundary-layer (IBL) model for the liquid film that is more suitable for a systematic investigation of gas-liquid flows

than the full Navier-Stokes equations. The IBL model for a free falling film was first introduced by Shkadov [28]

and was improved by Ruyer-Quil and Manneville [29,30,31]. Tseluiko and Kalliadasis [24] and Vellingiri et al. [25]

extended the approach of Ruyer-Quil and Manneville to two-phase gas-liquid flows. These models have been further

extended to include additional complexities, e.g. Marangoni effects [32,33,34,35]. The advantage of IBL models

is that they capture accurately the instability onset and they correctly describe nonlinear waves sufficiently far away

from the critical Reynolds number.

In the present study, we consider a weakly nonlinear model that is valid in a close neighbourhood of the critical

Reynolds number and is derived under the assumption that the amplitude of the interfacial waves is small. The

model was derived in Ref. [24]. It is the Kuramoto-Sivashinsky (KS) equation with an additional non-local term

that represents the effect of the turbulent gas. This non-local term has a dispersive effect, destabilising effect on

long waves and stabilising or destabilising effect on short waves depending on whether the gas flows downwards or

upwards. It is well known that the dynamics of the KS equation is chaotic in sufficiently large domains, see e.g.

Refs. [36,37,38,39]. On the other hand, it has been shown that dispersion in the form of a third-derivative term has a

regularising effect on the chaotic dynamics of the KS equation and the solution evolves into arrays of travelling pulses,

see e.g. Refs. [40,41,42]. In the more recent studies of Refs. [43,44,45,46] the regularising effect of dispersion was

further analysed and a rigorous coherent-structure theory for solitary pulses’ interaction was developed; the theory has

also been extended to the free falling film problem. In the present study, we analyse how the regularising dispersive

effect and destabilising effect of the non-local ‘gas term’ affect the dynamics of the KS equation.

The paper is organised as follows. In Sec. 2, we present a summary of the derivation of the weakly nonlinear

model for the liquid film in the presence of a turbulent gas. In Sec. 3, we present our numerical results. We conclude

in Sec. 4.

2. Summary of model derivation

We outline briefly the derivation of a weakly nonlinear model describing wave evolution on a liquid film sheared

by a turbulent gas. For more details see Refs. [24,25].

The main idea in the derivation is that under appropriate conditions the gas-liquid interface can be considered

as a solid wall for the gas problem. Therefore, for any prescribed interface profile, one can solve the gas problem

independent of the liquid flow. Under such an approach, the shear and normal stresses acting by the turbulent gas on

the interface can be expressed in terms of the interface profile, and these stresses will enter the stress balance conditions

for the liquid problem. Following the well-known long-wave approach, one can derive the evolution equation of the

height of the liquid film. A weakly nonlinear expansion of this equation results in a KS equation with additional

non-local terms representing the effect of the turbulent gas.

2.1. Gas problem
The gas flow is modelled by the incompressible Renolds-averaged Navier-Stokes equations. We consider the case

when the gas flows upwards. The equations are non-dimensionalised using Lg = μg/
√
ρgTw as the length scale, where

ρg, μg are the density and viscosity of the gas, respectively, and Tw is the magnitude of the shear stress along the wall

for the case when the lower wall is flat. The velocity scale is chosen as the so-called friction velocity, Ug =
√

Tw/ρg.

Besides, Tw is used as the scale for the pressure and the Reynolds stresses. Introducing the stream function Ψ and

eliminating the pressure from the governing equations, we obtain

∇4Ψ = −∂(Ψ,∇
2Ψ)

∂(x, z)
−R, (1)

where

∇2 = ∂2
x + ∂

2
z , ∇4 = (∇2)2, (2)

and
∂( f , g)

∂(x, z)
= (∂x f ) (∂zg) − (∂z f ) (∂xg), R = ∂xzτ11 + ∂

2
zτ12 − ∂2

xτ12 − ∂xzτ22. (3)
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