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Abstract: This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., 

mapping from a reference curved surface to a parallel surface with identical normal direction). The second 

gradient operator, the second class of integral theorems, the Gauss-curvature-based integral theorems, and 

the core property of parallel mapping are used to derive a series of parallel mapping invariants or geometri-

cally conserved quantities. These include not only local mapping invariants but also global mapping invari-

ants found to exist both in a curved surface and along curves on the curved surface. The parallel mapping 

invariants are used to identify important transformations between the reference surface and parallel surfaces. 

These mapping invariants and transformations have potential applications in geometry, physics, biome-

chanics, and mechanics in which various dynamic processes occur along or between parallel surfaces.  
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Introduction 

Recently, a series of mapping invariants called Gauss 
mapping invariants have been identified for Gauss 
mapping[1]. Similar invariants also exist for parallel 
mapping. The purpose of the paper is to derive the in-
variants for parallel mapping. 

Parallel mapping originated from constant thickness 
shells. For example, thin shell theory is an important 
branch of solid mechanics which uses parallel surfaces 
as a classical geometric concept. The middle surface of 
the thin shell with constant thickness is abstracted as a 
smooth curved surface A. An arbitrary point p on 
the curved surface A  is depicted by the point vector 

1 2( , )u ur r  with iu  being the Gauss parameter co-
ordinates and n  the unit normal at point p as shown 

in Fig. 1. A point *p  along the unit normal with dis-
tance *pp z  is then chosen. Then, the point vector 
of *p  is 

* 1 2 1 2( ) ( )u ,u u ,u + zr r n          (1) 
If point p  moves in the surface A  with z  kept 
unchanged, the locus of points *p  will form a curved 
surface *A . The surface *A  is called the parallel sur-
face of surface A. According to this definition, the  

 
Fig. 1  Parallel surfaces and parallel mapping 
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upper and lower surfaces are all parallel surfaces of the 
middle surface of every shell with constant thickness. 

Parallel surfaces exist not only in thin shell struc-
tures, but also in many scientific and engineering fields. 
For example, multi-walled carbon nanotubes in physics 
and material sciences, cell membranes in cell biology, 
lipid bilayer vesicles in biophysics, and cables and 
tubes in modern industries, all include parallel surfaces 
which may be abstracted and idealized for all these 
structures. Thus, parallel surfaces exist in many fields, 
from science to technology, within disciplines and in-
terdisciplinary fields, from macro to micro scales, and 
from inorganic to organic systems. Therefore, the study 
of the general characteristics of parallel surfaces is of 
great importance. 

Equation (1) defines a parallel mapping. Once sur-
face A  is mapped into surface *A , the geometric 
quantities of surface A  will also be mapped onto 
surface *A . Most of the geometric quantities will be 
changed during the mapping process and these changes 
need to be well understood. However, there is another 
equally important (or even more important) question of 
which geometric quantities remain unchanged during 
parallel mapping. Thus, this study will analyze which 
geometric quantities are parallel mapping invariants. 

The starting point for studying parallel mapping in-
variants can be the recent progress in the mathematics 
of biomembranes[2] and recent advances in Gauss 
mapping invariants. The studies of biomembranes lead 
to the second gradient operator for curved surfaces[3]. 
The second gradient operator was then used to develop 
the second class of integral theorems[4-7] and the 
Gauss-curvature-based integral theorem. The second 
gradient operator, the second class of integral theorems, 
the Gauss-curvature-based integral theorem, and Gauss 
mapping were then combined to indentify a series of 
Gauss mapping invariants[1]. These ideas are extended 
here to parallel mapping to get a series of parallel 
mapping invariants. These invariants are then used to 
draw geometric transformations between a reference 
surface and a parallel surface which have various po-
tential applications in various disciplines. 

1  Second Gradient Operator and 
Second Class of Integral Theorems 

Before studying the parallel mapping invariants, first 
recall the fundamental tensors, the second gradient 

operator, the second class of integral theorems, and the 
deduced conservative laws. 

1.1  Fundamental tensors on the reference surface 

On the reference surface A, the fundamental tensors at 
point p  satisfy the tensor equation[8]: 

2 2H KL L G 0              (2) 
Here, G  is the first fundamental tensor, L  is the 
second, and 2L L L  is the third. 1 2( ) / 2H c c  
is the mean curvature and 1 2K c c  is the Gauss cur-
vature with 1c  and 2c  as the two principle curva-
tures. Equation (2) is similar to an algebraic equation 
with rank two and also has two solutions, L  and L̂. 
They also satisfy the Viete theorems: 

ˆ 2HL L G               (3a) 
ˆ KL L G                (3b) 

where L̂  is the conjugate fundamental tensor of L. 

1.2  Second gradient operator and second class of 
integral theorems 

The fundamental tensors G  and L̂  may be used to 
define differential operators:  

( )( ) ij
i jg

u
g , , 1,2i j         (4a) 

( )ˆ( ) ij
i jL

u
g , , 1,2i j         (4b) 

Here, ig is the covariant base vector. ijg  and îjL  

are the contravariant components of G  and L̂.  
is the first gradient operator in conventional differen-
tial geometry[8] and  is the second gradient opera-
tor[3-7]. In differential geometry, the first gradient op-
erator  leads to the first class of integral theo-
rems[5,6]. In the same way, the second gradient operator 

 leads to the second class of integral theorems for a 
tensor field T [6,7]: 

ˆd d 2 d
A C A

A KT s L T A T     (5a) 

d d
A C

A T r L T          (5b) 

where “ ” is a unified operator. If “ ” in Eq. (5a) is 
eliminated, the result is the second gradient theorem. If 
“ ” is replaced by inner product “ ”, the result is the 
second divergence theorem. If “ ” is replaced by ex-
terior product “ ”, the result is the second curl theo-
rem for the tensor field. Equation (5b) may be regarded 
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