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Abstract: For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-

able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, 

this paper studies the steady-state performance of Kalman filters for these system models. The results show 

that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the 

steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman 

filter as a function of the process and observation noise variances. These results can be used to analyze the 

steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the 

same steady-state performance as a given DPLL. 
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Introduction 

Digital phase-locked loops (DPLLs) are widely used 
for carrier or spread-code tracking, symbol synchroni-
zation, or timing recovery in various communication 
systems. Since these problems are essentially phase 
estimation problems, Kalman filter theory can also be 
used in these applications[1-6]. For some system models, 
the Kalman filter has the same structure as sec-
ond-order variable gain DPLLs[1,2]. The use of Kalman 
filters instead of DPLLs makes it possible to simulta-
neously achieve fast acquisition time, wide acquisition 
range, and low tracking jitter, without the tradeoffs 
associated with conventional fixed-gain DPLLs[1,2,6]. 

For precise system models, the Kalman filter is a 
linear minimum mean square error (LMMSE) estima-
tion, which gives both the estimate and the estimate 
error. However, in practice, the precise system model is 
impossible to determine. Thus, the Kalman filter per-
formance is difficult to evaluate. In contrast, DPLLs 
are widely used and the appropriate loop bandwidth 

can be easily chosen for various schemes. Since the 
structures of Kalman filters and second-order DPLLs 
are the same, the steady-state Kalman gain should be 
equivalent to the second-order DPLL gain. To apply 
the knowledge of DPLLs to the design of Kalman fil-
ters, the relationship between the Kalman filter model 
and DPLL loop bandwidth should be studied. Pata-
poutian gave an exact solution for the steady-state 
Kalman gains with respect to the noise variances and 
initial parameters[5]. However, the form is too complex 

to illustrate the relationships. Therefore, a simple   
approximate solution is needed to clarify the      
relationships. 

This paper shows that the steady-state Kalman gain 
has the same form as the DPLL gain. This paper also 
presents an approximate simple solution of the 
steady-state Kalman gain with an expression for the 
equivalent loop bandwidth of the Kalman filter as a 
function of the process and observation noise variances. 
These results can be used to analyze the steady-state 
performance of Kalman filters with DPLL theory. The 
result can also be used in reverse to determine the 
noise variances in the Kalman filter model for a given 
equivalent loop bandwidth to achieve rapid acquisition 
without loss of tracking reliability.  

  
   

 Received: 2008-04-17; revised: 2008-10-25 

** To whom correspondence should be addressed. 
E-mail: fzm@tsinghua.edu.cn; Tel: 86-10-62784074 



QIAN Yi (  ) et al. Steady-State Performance of Kalman Filter for DPLL 471

1  Kalman Filter Model for DPLL 

Denote n  and nf  as the phase and Doppler shift of 
the signal to track at sample n, respectively, and T as 
the sample period. Define the state vector as 

T( )n n nTfs  and nx  as the observed signal phase. 
The dynamic system can then be modeled as 
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where 2(0, )n Qu N  and 2(0, )n nN  represent 

the process and observation noise[1]. 
Define T

0, 1,( )n n nG GG  as the Kalman gain, 

K as the error variance matrix, Tˆˆˆ ( )n n nTfs  as the 
n-th estimate, and | 1ˆn ns  as the n-th prediction from 
sample n 1. Note that | 1ˆn n n nx hs . The Kalman 
equations with the initial conditions 1ŝ  and 1| 1K [7] 

are as follows: 
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Equation (7) can then give the following expres-
sion for the signal phase prediction: 

 1| | 1 | 1 0, 1,
ˆˆ ˆ
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The block diagram representation of Eq. (8) shown 
in Fig. 1 is equivalent to a second-order DPLL with   
a proportional integral, except for the time-varying 
Kalman gains instead of the fixed gains in the 
DPLL[1,2]. 

2  Steady-State Equivalent Loop 
Bandwidth of Kalman Filter 

This section proves the equivalence between the con-
verged Kalman gain and the DPLL gain and then de-
velops a relationship between the noise variances for 
the Kalman filter and the DPLL loop bandwidth. 

 
Fig. 1  Kalman filter block diagram 

When n , the Kalman filter converges to the 
the steady state, which means that 1| | 1n n n nK K  
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K , 1n nG G G . These equations can 

be substituted into Eqs. (3)-(5) to get the followings 
(as shown in the Appendix): 
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 as the equivalent natu-

ral frequency, the steady-state Kalman gain has the 
form, 
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According to Ref. [8], the gain of second-order 
DPLL is 

2

1 2 2 2
0 1

1 8 4( )( )
4 4 ( ) 4 4 ( )

T TC C
k k T T T T

 (12) 
where  denotes the damping ratio, and 0k  and 1k  
denote the gains of the discriminator and the numerical 
controlled oscillator (NCO). Comparison of Eqs. (11) 
and (12) shows that the steady state Kalman gain is 
equivalent to the DPLL gain with 1 / 2  and 

0 1 1k k , except for the 2( )T  term in the denomina-
tor. In the DPLL, the sampling time and the natural 
frequency should fulfill 1T  to function prop-
erly[8,9]. Thus, 2( )T  is a very small quantity, which 
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