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Abstract: Navigation and surveillance applications require tracking constant input/bias targets. When the

target’s trajectory follows a constant input/bias constraint, model mismatching caused by conventional track-

ing algorithms can be handled by a delayed update filter (DUF). The statistical convergence and stability

properties of the delayed update filter were studied to insure the rationality of its steady-state analysis. A

steady-state filter gain was then designed for a constant-gain DUF to reduce the computations without much

performance loss. Simulations demonstrate the potential of the constant-gain DUF, and the CGDUF is

nearly 60% faster than the DUF without much loss in steady-state tracking accuracy.
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Introduction

Numerous applications such as environmental monitor-
ing, military surveillance, navigation, and control of
moving vehicles require target-tracker algorithms
which make use of discrete-time noisy observations to
estimate and predict the kinematics of a dynamic tar-
get™. A significant body of literature exists which ad-
dresses the problem of track-while-scan systems. The
most ubiquitous recursive estimation technique in tar-
get tracking, the discrete-time Kalman filter’? (KF),
models the arrival of an observation as a random proc-
ess whose parameters are related to the sensor charac-
teristics. However, target tracking with the standard KF
can lead to divergence if there is a mismatching of the
dynamic model or a lack of input/bias information.
Therefore, the variable dimension (VD) filter® and
multiple model (MM) algorithmst*® were developed to
handle dynamic model mismatching by modeling
changes of the dynamical models. The two-stage fil-
ter® and the input estimation (IE) method ™ were de-
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veloped to de-bias the tracking filter through estimates
of the system input/bias, and then correct the filter out-
put online. Additionally, a maneuver detector (MD)!"®
may be needed in some algorithms to judge whether a
target is maneuvering and to smoothly adapt the algo-
rithm to a variable dynamic model. Alouani and Blair
proposed an effective scheme!® utilizing a kinematic
constraint for tracking a constant speed, maneuvering
target, which gives improved performance with little
increase in computations. Liu et al.*? modified these
methods for the problem of tracking a target with a
constant input/bias constraint, which also aimed to re-
move the influence caused by the mismatch of com-
mon dynamic models.

The target tracker with a constant input/bias con-
straint was referred to as the delayed update filter
(DUF)™. As in earlier methods®®*, the DUF uses a
constant  input/bias constraint as a pseudo-
measurement to update the current states estimated via
the KF. Because this constraint can remove the influ-
ence caused by the mismatch of common dynamic
models, the DUF can mine the steady-state perform-
ance when tracking a constant input/bias target while
its transient performance is maintained as maneuvers
occur. Optimal filtering theory!? was used to prove
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the asymptotically stable and statistically convergent
system. Hence, the rationality of the DUF steady-state
analysis can be guaranteed. Numerical solutions of the
steady-state filter gains for the DUF are obtained in the
second-order model. A constant-gain filter constructed
with the steady-state filter gains of the DUF (such as
the «-fg filter instead of the second-order KF) is de-
veloped here as a constant-gain DUF (CGDUF). In
practice, target tracking with a CGDUF significantly
reduces the computational cost without much perform-
ance loss relative to the DUF. Finally, the advantages
and effectiveness of the CGDUF are verified in simula-
tions comparing the DUF and CGDUF algorithms with
the KFand «-f filter.

1 Problem Formulation
1.1 Delayed update filter

This analysis starts from the discrete Kalman filtering
modeling and formulation and then models the con-
stant input/bias assumption as a constraint to the con-
ventional dynamic system. Consider the following dis-
crete-time linear system™*:

%y = Az + Bu, + Co,

o)
)

where z, e R" is the state vector at timek, y, e R"

Yo =Dz +y,

is the observation vector, u, eR' is the input/bias

vector injected into this dynamic system, A, B, and C
are matrices that describe the dynamic system patterns,
D is the measurement matrix, and @, e R” and
v, € R™ are zero-mean Gaussian random vectors with
covariance matrices @ =0and R=0. The input/
bias wu, in Eq. (1) is the velocity when z, contains
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only the position state of a target but is the acceleration
when z, contains the position and velocity states. For

such a target trajectory which follows a constant in-
put/bias constraint, =, can be assumed to be a con-

stant velocity vector u., or a constant acceleration
vector u., depending on the definition of z, with

the matrices in Eqgs. (1) and (2) chosen accordingly.

Since neither ., nor wu., is known by the track-
ing system but can be estimated, a new state vector is

generally obtained by adjoining #, to z, as x, :[Zk
k

Hence, the system model for an augmented KF is often

given by
x., = Fx, +Go,

» = Hx, +v,

listed in Table 1™, Based on these configurations, ei-

ther the velocity state in the constant velocity (CV)
model or the acceleration state in the constant accelera-
tion (CA) model is intrinsically modeled as a first-
order Markov process with additional non-zero vari-

ance dynamic noise @, . Hence the dynamic noise @,

will be iteratively accumulated into state vector. Since
neither the velocity state in the CV model nor the ac-
celeration state in the CA model is actually constant,
the constant input/bias constraint in the trajectory is
always violated. Other tracking algorithms in common
use such as the VD and the interactive multiple model

(IMM) filter™ do not rely on this constant input/bias

constraint. Therefore, mismatches of dynamic models

occur.

Table 1 DUF configurations in one-dimensional coordinates

Configuration

CV model (second-order model)

CA model (third-order model)

States

Dynamic matrices

e

Measurement matrices H=[1 0], H=[0 1]

Pseudo-measurement 14 o
YE = z X
N %
Rl? Rf = Pysk

Constant DUF gain

% =[x ] w =% ] % =[x Xk]T

K, =[a BIT]", K% =[a"T BT

% =[X Xk]Tv uw =[X]1 x =[x % 5<|<:|T

1 T 0572 0.5T°
F=|01 T |, G=| T
01 1 1
H=[1 0 O], H=[0 0 1]
. 1 N
YK:NEXM
Rf=|0m

K, =[a BIT? yITT, K =[a"T BT »T

©)
(4)

where F and G are the dynamic matrices, and H is the
measurement matrix. Their classical configurations are
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