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Abstract: Navigation and surveillance applications require tracking constant input/bias targets. When the 

target’s trajectory follows a constant input/bias constraint, model mismatching caused by conventional track-

ing algorithms can be handled by a delayed update filter (DUF). The statistical convergence and stability 

properties of the delayed update filter were studied to insure the rationality of its steady-state analysis. A 

steady-state filter gain was then designed for a constant-gain DUF to reduce the computations without much 

performance loss. Simulations demonstrate the potential of the constant-gain DUF, and the CGDUF is 

nearly 60% faster than the DUF without much loss in steady-state tracking accuracy. 
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Introduction 

Numerous applications such as environmental monitor-
ing, military surveillance, navigation, and control of 
moving vehicles require target-tracker algorithms 
which make use of discrete-time noisy observations to 
estimate and predict the kinematics of a dynamic tar-
get[1]. A significant body of literature exists which ad-
dresses the problem of track-while-scan systems. The 
most ubiquitous recursive estimation technique in tar-
get tracking, the discrete-time Kalman filter[2] (KF), 
models the arrival of an observation as a random proc-
ess whose parameters are related to the sensor charac-
teristics. However, target tracking with the standard KF 
can lead to divergence if there is a mismatching of the 
dynamic model or a lack of input/bias information. 
Therefore, the variable dimension (VD) filter[3] and 
multiple model (MM) algorithms[4,5] were developed to 
handle dynamic model mismatching by modeling 
changes of the dynamical models. The two-stage fil-
ter[6] and the input estimation (IE) method[7] were de-

veloped to de-bias the tracking filter through estimates 
of the system input/bias, and then correct the filter out-
put online. Additionally, a maneuver detector (MD)[7,8] 
may be needed in some algorithms to judge whether a 
target is maneuvering and to smoothly adapt the algo-
rithm to a variable dynamic model. Alouani and Blair 
proposed an effective scheme[9] utilizing a kinematic 
constraint for tracking a constant speed, maneuvering 
target, which gives improved performance with little 
increase in computations. Liu et al.[10] modified these 
methods for the problem of tracking a target with a 
constant input/bias constraint, which also aimed to re-
move the influence caused by the mismatch of com-
mon dynamic models. 

The target tracker with a constant input/bias con-
straint was referred to as the delayed update filter 
(DUF)[10]. As in earlier methods[9,11], the DUF uses a 
constant input/bias constraint as a pseudo-
measurement to update the current states estimated via 
the KF. Because this constraint can remove the influ-
ence caused by the mismatch of common dynamic 
models, the DUF can mine the steady-state perform-
ance when tracking a constant input/bias target while 
its transient performance is maintained as maneuvers 
occur. Optimal filtering theory[12] was used to prove 
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the asymptotically stable and statistically convergent 
system. Hence, the rationality of the DUF steady-state 
analysis can be guaranteed. Numerical solutions of the 
steady-state filter gains for the DUF are obtained in the 
second-order model. A constant-gain filter constructed 
with the steady-state filter gains of the DUF (such as 
the -α β  filter instead of the second-order KF) is de-
veloped here as a constant-gain DUF (CGDUF). In 
practice, target tracking with a CGDUF significantly 
reduces the computational cost without much perform-
ance loss relative to the DUF. Finally, the advantages 
and effectiveness of the CGDUF are verified in simula-
tions comparing the DUF and CGDUF algorithms with 
the KF and -α β  filter. 

1 Problem Formulation 
1.1 Delayed update filter 

This analysis starts from the discrete Kalman filtering 
modeling and formulation and then models the con-
stant input/bias assumption as a constraint to the con-
ventional dynamic system. Consider the following dis-
crete-time linear system[13]: 

1k k k k+ = + +z Az Bu Cω           (1) 

k k k= +y Dz υ                (2) 

where n
k ∈z R  is the state vector at time k , m

k ∈y R  
is the observation vector, l

k ∈u R  is the input/bias 
vector injected into this dynamic system, A , B, and C 
are matrices that describe the dynamic system patterns, 
D is the measurement matrix, and p

k ∈ Rω  and 
m

k ∈Rυ  are zero-mean Gaussian random vectors with 
covariance matrices 0Q≥ and 0.R≥  The input/ 
bias ku  in Eq. (1) is the velocity when kz  contains 

only the position state of a target but is the acceleration 
when kz  contains the position and velocity states. For 
such a target trajectory which follows a constant in-
put/bias constraint, ku  can be assumed to be a con-
stant velocity vector CVu  or a constant acceleration 
vector CAu  depending on the definition of kz  with 
the matrices in Eqs. (1) and (2) chosen accordingly.  

Since neither CVu  nor CAu  is known by the track-
ing system but can be estimated, a new state vector is 

generally obtained by adjoining ku  to kz  as k
k

k

⎡ ⎤= ⎢ ⎥⎣ ⎦
zx u . 

Hence, the system model for an augmented KF is often 
given by 

1k k k+ = +x Fx Gω             (3) 

k k k= +y Hx υ               (4) 

where F and G are the dynamic matrices, and H is the 
measurement matrix. Their classical configurations are 
listed in Table 1[14]. Based on these configurations, ei-
ther the velocity state in the constant velocity (CV) 
model or the acceleration state in the constant accelera-
tion (CA) model is intrinsically modeled as a first-
order Markov process with additional non-zero vari-
ance dynamic noise kω . Hence the dynamic noise kω  
will be iteratively accumulated into state vector. Since 
neither the velocity state in the CV model nor the ac-
celeration state in the CA model is actually constant, 
the constant input/bias constraint in the trajectory is 
always violated. Other tracking algorithms in common 
use such as the VD and the interactive multiple model 
(IMM) filter[4] do not rely on this constant input/bias 
constraint. Therefore, mismatches of dynamic models 
occur.

Table 1 DUF configurations in one-dimensional coordinates 

Configuration CV model (second-order model) CA model (third-order model) 
States T[ ],  [ ],  [   ]k k k k k k kx x x x= = =� �z u x  T T

  [   ] ,   [ ],   [   ]k k k k k k k k kx x x x x x= = =z u x� �� � ��  
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