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Abstract: Precise, real-time measurements of overflow particle size distributions in hydrocyclones are nec-

essary for accurate control of the comminution circuits. Soft sensing measurements provide real-time, flexi-

ble, and low-cost measurements appropriate for the overflow particle size distributions in hydrocyclones. 

Three soft sensing methods were investigated for measuring the overflow particle size distributions in hy-

drocyclones. Simulations show that these methods have various advantages and disadvantages. Optimal 

Bayesian estimation fusion was then used to combine three methods with the fusion parameters determined 

according to the performance of each method with validation samples. The combined method compensates 

for the disadvantages of each method for more precise measurements. Simulations using real operating 

data show that the absolute root mean square measurement error of the combined method was always 

about 2% and the method provides the necessary accuracy for beneficiation plants. 
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Introduction 

A hydrocyclone is an efficient piece of equipment for 
separating particle mixtures by size, so they are widely 
applied in the beneficiation field, where the overflow 
particle size distribution in hydrocyclones is of great 
significance. Each kind of ore has a best particle size for 
smelting, with smaller particles result in losses in the 
floatation process and wasted power in the ball mills 
while larger particles have reduced recovery rates which 
results in difficulty in subsequent processes. Therefore, 
the overflow particle size distributions in hydrocyclones 
should be accurately measured to efficiently control the 
ball mills and hydrocyclones and to avoid over or under 
milling. Accurate measurements will significantly im-

prove production quality and recovery rate while  
reducing energy consumption. 

Normally, the overflow particle size distributions in 
hydrocyclones is evaluated by the proportion of parti-
cles within a certain size range. This paper concen-
trates on particles smaller than 74 mµ , with the propor-
tion of particles within this range denoted as 74β−  as a 
decimal between 0 and 1.  

Off-line manual tests have been widely used to 
measure the overflow particle size distributions in hy-
drocyclones because they are easy to realize and pre-
cise, but the intervals between tests are normally too 
long (normally several hours), so the results cannot be 
used for real-time feedback to a controller. Online 
measurements using particle size measuring instru-
ments can provide real-time measurements, but the in-
struments are quite expensive and require complex 
maintenance. Many plants cannot afford such equip-
ment. Soft sensing monitors measure non-measurable 
or hard-to-measure variables by measuring more easily 
measured  variables  which  are  then  related  to  the 
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difficult variables. Soft sensing can provide real-time 
measurements with equipment and maintenance costs 
that are relatively low and soft sensors can be easily 
modified. Therefore, soft sensing methods are more 
appropriate for measuring the overflow particle size 
distributions in hydrocyclones. 

There are several kinds of soft sensing methods[1], 
for measuring the overflow particle size distributions 
in hydrocyclones. Machine learning methods analyze 
the hydrocyclone as a nonlinear mapping problem with 
the mapping developed using training data. This 
method does not require a physically-based model, but 
the resulting model lacks physical meaning. The 
method over-emphasizes the training samples and can-
not guarantee the measuring reliability outside the 
range of the training samples. In addition, the training 
process may fail and result in a wrong model if poor 
training samples are used and “good” and “poor” train-
ing samples cannot be easily distinguished beforehand. 
The following soft sensing methods for hydrocyclones 
are proposed: soft sensors for measuring the reduced 
cut size 50cd  based on fuzzy and neural-fuzzy meth-
ods[2-4] and for the overflow particle size distributions 
in hydrocyclones based on support vector machines[5]. 
Identification methods combine several theoretical and 
empirical formulas to deduce a simplified hydrocy-
clone model, with a training sample based identifica-
tion method then used to estimate the non-measurable 
parameters in the model. The measurements are then 
based on these estimated parameters. All the variables 
and parameters in this method possess some physical 
meaning; therefore, this method can be easily modified 
and improved by new theories. This method is not as 
sensitive to the training samples as the machine learn-
ing methods. The most serious disadvantage of the 
identification methods is that, because many hydrocyc-
lone formulas are empirical or semi-empirical, the 
combined measurement model is not as accurate. 
Casali et al.[6] described a soft sensor identification 
method for measuring overflows concentration, but 
there are no known reports using the identification 
method to measure the overflow particle size distribu-
tions in hydrocyclones. Arterburn[7] used an empirical 
formula in table form, this formula can be directly util-
ized for soft sensor measurements. The main advantage 
of this method is that it does not need training samples 
and is easy to implement, but the measuring precision 
will be poor if the operating conditions change. 

This paper combines these methods and presents a 

simulation based on real operating data from a benefi-
ciation  plant  to  validate  the  performance  of  each 
individual method and the combined method. 

1 Support Vector Machine Method 

The support vector machine (SVM) method is a gen-
eral machine learning method derived from pattern 
recognition theory and statistical learning theory. The 
resulting learning machine minimizes both the empiri-
cal risk and the upper bound of the Vapnik-
Chervonenkis (VC)-dimension, which implies that it 
accurately fits the training samples and possesses good 
generalization ability. The SVM method has been ap-
plied to pattern recognition, function regression, and 
probability density function estimation. This model 
uses the SVM method for function regression[8] . 

Unlike neural networks, the SVM method does not 
exactly fit the training sample but fits the training sam-
ples within a predefined error tolerance with penalties 
for training samples outside the tolerance, which are 
usually a small fraction of the total. The regression 
function should be made as smooth as it can be so that 
the SVM can be generalized even if only several train-
ing samples are available. Therefore, the SVM method 
is a reasonable method for problems with relatively 
few training samples. 

Assume there are l training samples 
( ), ,  1,2, ,i iy i l= …x  that obey an unknown function 

with additive observation noise: 
( )real ,   1,2, ,i i iy f i lυ= + = …x         (1) 

where ,  1,2, ,i i lυ = …  are i.i.d. observation noises. 
The regression functions for the SVM are of the form: 
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where ,  1,2, ,i i l= …x  denote the input variables in 
the training samples which may be scalars or vectors; l 
denotes the number of training samples; iα , *

iα , and 
b are parameters which must be determined by the 
training; and K is a kernel function whose form must 
be determined beforehand. 

The SVM training process determines iα , *
iα , and 

b by solving a convex optimization problem:  
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