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Abstract: This paper describes a semi-supervised regularized method for additive logistic regression. The 

graph regularization term of the combined functions is added to the original cost functional used in 

AdaBoost. This term constrains the learned function to be smooth on a graph. Then the gradient solution is 

computed with the advantage that the regularization parameter can be adaptively selected. Finally, the func-

tion step-size of each iteration can be computed using Newton-Raphson iteration. Experiments on bench-

mark data sets show that the algorithm gives better results than existing methods. 
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Introduction 

Generalized additive models (GAMs) have been suc-
cessfully used for nonlinear problems in statistics[1]. 
They generate solutions by a sum of functions 
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= ∑x  which are based on the covariates 

of the features vector x = (x(1), x(2)
, ..., x(m))T. They are 

used to solve regression problems using the residual 
based Backfitting algorithm and to solve other general-
ized   linear   models   (GLMs)  using  
the  Fisher  scoring  procedure  (for  the  
exponential  family  only) or  the  Newton-
Raphson iteration based Backfitting algorithm[2]. 

GAMs can be more generally considered to be a set 
of functions of all the input features: ( )F =x  
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∑ x  If the “base functions” f(x, γ) are not 

easy to compute or there is a large dictionary of candi-
date over-complete base (i.e., for a classification tree 
with k terminal nodes, the number of functions[3] is 
bounded from (np)k·2k2

), this procedure can be modi-
fied to a greedy forward stage-wise algorithm. With 
fixed Ft−1(x), the algorithm finds the new function to 
be Ft(x) = Ft−1(x)+βt ft (x). This approach is useful 
since the base function can be arbitrary, including both 
parametric and non-parametric methods for regression, 
classification, and also signal processing. 

For the binary classification problem in machine 
learning, the well-known Boosting is equivalent to 
forward stage-wise additive modeling[1]. More specifi-
cally, the popular AdaBoost algorithm[4] can be seen as 
a gradient descent solution of the additive logistic re-

gression model:  
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where 

P(y= 1|x) is the probability of an input point belonging 
to a positive class. AdaBoost in essence minimizes the 
exponential cost functional of the margin[5,6]. The algo-
rithm gives more attention to large negative margins, 
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which results in large weights for the misclassification 
data. 

To boost a “base learner” (or “weak learner”) to deal 
with the partially labeled data, the margin of unlabeled 
data should be defined[7]. Bennet et al.[8] introduced 
“pseudo-classes” of unlabeled points. Their method, 
ASSEMBLE (Adaptive Semi-Supervised ensEMBLE) 
method, has two advantages that the “base learner” can 
be any supervised classifier and the adaptive step-sizes 
can be efficiently computed. 

Regularization theory was originally developed to 
solve ill-posed problems. Recently, it has been ex-
tended to become an important part of statistical learn-
ing. Although Boosting performs well in generalization 
property, it still needs regularization[9]. Regularization 
for Boosting has been studied for years[10]. It has many 
forms, such as the L1 or L2 penalty terms in the inner 
product space of the hypothesis coefficients[6,11], a term 
in the reproducing kernel Hilbert space (RKHS) of the 
combined function[12], and a term based on graph 
analysis of the “base learner”[13]. 

For semi-supervised learning[14,15], the regularization 
term based on the graph Laplacian is often used[16-19]. 
It is intuitive that every point’s label should be similar 
to the labels of points in its local neighborhood. There-
fore, besides maximizing the minimal margins, a 
smoother combined function with respect to the known 
labeled and unlabeled points would be very helpful. 
The graph Laplacian operator regularizes the function 
to be smooth on the constructed graph. Moreover, it 
can approximate to the Laplace-Beltrami operator on 
manifold which measures the smoothness of the de-
fined function on the manifold[20]. 

In this paper, we propose a semi-supervised regular-
ized additive logistic regression algorithm. The frame-
work contains the graph regularization term of the 
combined functions together with the cost functional of 
the margin. Thus, the solution is the negative gradient 
direction in each iteration. The algorithm has several 
advantages: 

 The algorithm includes a clear explanation of the 
solutions to the two functions. The first term mini-
mizes the exponential negative margin cost functional. 
The second term corrects the current label of each 
point based on their neighbor information and smooths 
the combined function. Both are easily computed using 
defined pseudo-classes on their respective distributions. 

 The solution gives an adaptive regularization pa-
rameter. This parameter guarantees that the cost func-
tional of the margin decreases in each iteration. With 
the definition of the two types of pseudo-classes, the 
function step-size for each iteration can be computed 
using a Newton-Raphson iteration. 

 The regularization result can be seen as a form 
of the shrinkage strategy[1]. Therefore, the additive 
model both reduces the margin cost and smooths the 
functions. 

1 Regularized Semi-Supervised  
Additive Logistic Regression 

For the semi-supervised learning problem, assume that 
the learner is learning from a set of observed examples 
D={X, y}. Suppose that there are l labeled points and u 
unlabeled points. Then, the observed input points can 
be written as X = {XL, XU}, where XL = {x1, x2, ..., xl} 
and XU ={xl+1, xl+2, ... , xl+u}. Each point m∈ ⊆ RXx  
is an m dimensional vector. In the two-class case, the 
label y∈Y  can only be the binary values {1, −1}. 
The observed label set is y = yL ={y1, y2, ..., yl}. For la-
beled points, {XL, yL} are randomly generated accord-
ing to some unknown probability p(x, y). For unlabeled 
points, XU are randomly generated from the marginal 
probability p(x). 

In the additive logistic regression framework, the 
additive model has the form: 
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where ft(x): X→{1,−1} is the “base learner” (hypothe-
ses), t is the iteration number, and ct is the weighting 
coefficient of the function ft. The function F(x) which 
minimizes the exponential criterion 

J(F) = E(e−yF(x))                 (2) 
is the symmetric logistic transform of P(y = 1|x)[5]. 

1.1 Semi-supervised regularization framework 
The general semi-supervised regularization framework 
on the combined function is 

* 2( ) arg min ( , ( ))d ( , ) IF
F V y F p y Fλ

×∈
= +∫ & &

X YF
x x x  

(3) 
where λ is a parameter that controls the tradeoff be-
tween the two terms. ( ( ), )d ( , )V F y p y

×∫ x x
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expected risk. Many functions can be used for loss 
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