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Abstract: A fast multipole boundary element method (FM-BEM) was applied for the analysis of microcracked 

solids. Both the computational complexity and memory requirement are reduced to O(N), where N is the 

number of degrees of freedom. The effective elastic moduli of a 2-D solid containing thousands of randomly 

distributed microcracks were evaluated using the FM-BEM. The results prove that both the differential 

method and the method proposed by Feng and Yu provide satisfactory estimates to such problems. The ef-

fect of a non-uniform distribution of microcracks has been studied using a novel model. The numerical re-

sults show that the non-uniform distribution induces a small increase in the global stiffness. 
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Introduction 

Generally speaking, brittle or quasi-brittle materials 
contain large numbers of pre-existing microcracks. 
Various aspects of the deformation and failure behavior 
of such materials are associated with the distribution 
and interaction of these microcracks. Because of the 
requirement for boundary-only discretization and due 
to its semi-analytical nature, the boundary element 
method (BEM) is recognized as a powerful tool for 
fracture mechanics analysis[1]. However, the dense and 
asymmetric coefficient matrix makes the conventional 
BEM inefficient for large-scale problems. 

To improve run-time speed and memory storage ef-
ficiency, the fast multipole method (FMM)[2] has been 
applied to the BEM. The fast multipole BEM (FM-
BEM) uses the same discretization as the conventional 
BEM, but uses a quad-tree (for 2-D cases) or an octal-
tree (for 3-D cases) for computation and storage. The 

matrix-vector product is obtained by recursive opera-
tions on the tree structure without explicitly forming 
the coefficient matrix. In recent years, FM-BEM algo-
rithms and their applications have been investigated by 
many researchers[3-6]. Among these, several schemes 
have been successfully applied to large-scale fracture 
analysis[7-12]. 

In the present paper, an FM-BEM based on dual 
boundary integral equations (DBIE)[13] is applied for 
the simulation of a 2-D microcracked solid. By com-
bining multipole expansions with local expansions, 
both the computational complexity and memory re-
quirement are reduced to O(N), where N is the number 
of degrees of freedom (DOFs). The effective elastic 
moduli of 2-D solids containing thousands of randomly 
distributed microcracks are evaluated using the model, 
and the numerical results are compared with the corre-
sponding solutions from various micromechanical 
models. In addition, a novel model is presented for the 
simulation of a non-uniform distribution of micro-
cracks. The effect of a non-uniform distribution on the 
effective elastic moduli is evaluated using the FM-
BEM scheme. 
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1  Formulation and Implementation 
of the FM-BEM 

1.1  DBIE formulation for crack analysis   

Figure 1 shows a crack cΓ  including two coincide 
surfaces, cΓ −  and cΓ + , in a 2-D elastic solid Ω  sur-
rounded by an external boundary oΓ . In the absence 
of body forces, the following displacement integral 
equation can be obtained. 
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where  ( )uβ y  and ( )tβ y  are the displacement and 
traction components at field point ,y  ( )cαβ x  is a 

free term depending on the shape of the boundary, and 
( , )U
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x y  and ( , )T
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x y  represent the Kelvin dis-

placement and traction fundamental solutions. 

 
Fig. 1 A 2-D elastic solid with a single crack 

Assuming continuity of both strains and tractions at 
x  on a smooth boundary, the following traction 

boundary integral equation can be obtained. 
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where ( )nα x  denotes the component of the outward 
unit normal at x . The detailed expressions for the 
kernel functions ( ),  Dγαβ x y  and ( ),  Sγαβ x y  can be 

found in Ref. [13]. 
Equations (1) and (2) form the DBIE formulation for 

crack analysis. The displacement equation (1) is ap-
plied for collocation on the external bosundary and on 
one crack surface; the traction equation (2) is used for 
collocation on the other crack surface.  

1.2  Outline of the FM-BEM 

As shown in Fig. 2, the FMM algorithm comprises the 
following four key operations[2,4]. 

(1) Multipole expansion. In Fig. 2, a square cell A, 
whose center is 0y , contains a boundary segment AΓ . 
Using the multipole expansion, the contribution of the 
boundary integral on AΓ  with respect to the source 
point x  is concentrated at 0y . 

(2) Multipole to multipole translation (M2M). Using 
this operation the contribution of 0y  is shifted to 
point 1y , which is the center of A’s parent super cell B. 

(3) Multipole to local translation (M2L). Using this 
operation the contribution of 1y  is shifted to 0x , 
which is the center of cell C containing x . 

(4) Local to local translation (L2L). Using this op-
eration the contribution of 0x  is shifted to 1x , which 
is the center of child cell D containing x . 

 
Fig. 2 Key operations of FMM 

A detailed description of the above four operations 
can be found in Refs. [11,12]. In the implementation of 
the FM-BEM, the boundaries and microcracks are first 
discretized into elements in the same way as in the 
conventional BEM. Next, an adaptive tree data struc-
ture is constructed for storage and computation. The 
root of the tree, which is at level 0, is a square cell con-
taining all the boundaries and microcracks of the 
model. The root is divided into four child cells at level 
1. Each child cell is divided in the same way until the 
number of elements in it is less than a predefined num-
ber. Finally, an iterative process is executed to solve 
the equation system derived from DBIE. In each    
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